Custom Conversion Techniques
Overview of Custom Conversion
Custom conversion techniques allow developers to create sophisticated type transformation methods beyond standard built-in functions.
Implementing Custom Conversion Methods
Method 1: Using __str__()
and __repr__()
Methods
class CustomData:
def __init__(self, value):
self.value = value
def __str__(self):
return f"Custom String Representation: {self.value}"
def __repr__(self):
return f"CustomData({self.value})"
## Usage example
data = CustomData(42)
print(str(data)) ## Custom string conversion
print(repr(data)) ## Custom representation
Method 2: Type Conversion Decorators
def type_converter(target_type):
def decorator(func):
def wrapper(value):
try:
return target_type(value)
except ValueError:
return None
return wrapper
return decorator
## Custom type conversion decorator
@type_converter(int)
def convert_to_integer(value):
return value
## Usage
result = convert_to_integer("123")
Advanced Conversion Techniques
Custom Conversion Workflow
graph TD
A[Input Data] --> B{Validation}
B -->|Valid| C[Conversion Process]
B -->|Invalid| D[Error Handling]
C --> E[Transformed Data]
D --> F[Return Default/Raise Exception]
Complex Conversion Class
class AdvancedConverter:
@staticmethod
def convert(value, conversion_rules):
for rule in conversion_rules:
try:
return rule(value)
except (ValueError, TypeError):
continue
raise ValueError("No suitable conversion found")
## Usage example
def str_to_int(x): return int(x)
def str_to_float(x): return float(x)
converter = AdvancedConverter()
rules = [str_to_int, str_to_float]
result = converter.convert("42.5", rules)
Conversion Strategy Patterns
Conversion Strategy |
Description |
Use Case |
Strict Conversion |
Raises exception on invalid input |
Data validation |
Lenient Conversion |
Returns default/None on failure |
Flexible parsing |
Multi-step Conversion |
Tries multiple conversion methods |
Complex transformations |
Error Handling Techniques
class SafeConverter:
@staticmethod
def safe_convert(value, converter, default=None):
try:
return converter(value)
except (ValueError, TypeError):
return default
## Example usage
safe_result = SafeConverter.safe_convert("not_number", int, default=0)
import functools
@functools.lru_cache(maxsize=128)
def optimized_conversion(value):
## Cached conversion method
return int(value)
Context Managers for Conversion
class ConversionContext:
def __init__(self, converter):
self.converter = converter
def __enter__(self):
return self
def __exit__(self, exc_type, exc_value, traceback):
## Optional cleanup or logging
pass
## Usage
with ConversionContext(int) as context:
result = context.converter("42")
LabEx Learning Tip
Explore custom conversion techniques in LabEx's interactive Python environments to master advanced type transformation skills.
Best Practices
- Implement clear error handling
- Create flexible conversion methods
- Use type hints for clarity
- Test conversion methods thoroughly