Conversion Techniques
Overview of Data Structure Conversion
Converting between different data structures is a fundamental skill in Python programming. This section explores various conversion methods and techniques.
Basic Conversion Methods
1. List Conversions
## Converting to list
tuple_to_list = list((1, 2, 3))
set_to_list = list({4, 5, 6})
string_to_list = list("hello")
## Converting from list
list_to_tuple = tuple([1, 2, 3])
list_to_set = set([1, 2, 3])
2. Tuple Conversions
## Converting to tuple
list_to_tuple = tuple([1, 2, 3])
set_to_tuple = tuple({4, 5, 6})
string_to_tuple = tuple("hello")
3. Dictionary Conversions
## Creating dictionaries from other structures
list_to_dict = dict([(1, 'one'), (2, 'two')])
zip_to_dict = dict(zip(['a', 'b'], [1, 2]))
## Dictionary methods
dict_keys = list(my_dict.keys())
dict_values = list(my_dict.values())
Advanced Conversion Techniques
Type Conversion Matrix
Source Type |
Conversion Target |
Method |
Example |
List |
Tuple |
tuple() |
tuple([1,2,3]) |
Set |
List |
list() |
list({1,2,3}) |
String |
List |
list() |
list("hello") |
Dictionary |
List |
list() |
list(dict.keys()) |
Conversion Flow Diagram
graph TD
A[Original Data Structure] --> B{Conversion Type}
B --> |List to Tuple| C[tuple()]
B --> |Set to List| D[list()]
B --> |Dictionary to List| E[list(dict.keys())]
B --> |String to List| F[list()]
Complex Conversion Scenarios
Nested Structure Conversion
## Converting nested structures
nested_list = [[1, 2], [3, 4]]
nested_tuple = tuple(map(tuple, nested_list))
## Flattening nested structures
from itertools import chain
flattened = list(chain.from_iterable(nested_list))
- Conversion methods have different performance characteristics
- Use appropriate conversion techniques based on data size
- Avoid unnecessary conversions in performance-critical code
Error Handling in Conversions
## Safe conversion with error handling
try:
converted = list(some_iterable)
except TypeError as e:
print(f"Conversion error: {e}")
At LabEx, we emphasize understanding these conversion techniques to write more flexible and efficient Python code.