Runtime Type Checking
Introduction to Runtime Type Checking
Runtime type checking is a mechanism to validate data types during program execution, ensuring type safety and preventing unexpected errors.
Type Checking Approaches
graph TD
A[Runtime Type Checking] --> B[Built-in Methods]
A --> C[Type Hints]
A --> D[Third-party Libraries]
A --> E[Manual Validation]
Built-in Type Checking Methods
isinstance() Function
def validate_input(value):
## Check if value is an integer
if isinstance(value, int):
return value * 2
else:
raise TypeError("Integer input required")
## Usage examples
print(validate_input(5)) ## Valid: returns 10
print(validate_input("hello")) ## Raises TypeError
type() Function
def process_data(data):
if type(data) == list:
return len(data)
elif type(data) == dict:
return list(data.keys())
else:
raise TypeError("Unsupported data type")
Type Hints and Validation
from typing import Union
def calculate(a: Union[int, float], b: Union[int, float]) -> float:
return a + b
## Advanced type checking
def strict_calculate(a: int, b: int) -> int:
return a + b
Comprehensive Type Checking Strategies
Strategy |
Pros |
Cons |
isinstance() |
Flexible |
Less strict |
type() |
Direct comparison |
Limited polymorphic support |
Type Hints |
Static analysis |
Runtime overhead |
Third-party libraries |
Advanced checking |
Additional dependencies |
Advanced Type Validation Libraries
- mypy: Static type checker
- typeguard: Runtime type checking
- pydantic: Data validation library
Best Practices in LabEx Environment
- Use type hints for clarity
- Implement runtime type checks for critical functions
- Choose appropriate validation method based on use case
- Balance between type safety and performance
Code Example: Comprehensive Type Checking
from typing import Union, List
import typeguard
@typeguard.typechecked
def process_collection(data: Union[List[int], List[str]]) -> int:
if not data:
return 0
return len(data)
## Safe usage
print(process_collection([1, 2, 3]))
print(process_collection(["a", "b", "c"]))
## Raises TypeError for invalid input
- Runtime type checking adds computational overhead
- Use selectively for critical code paths
- Consider static type checking for large projects