Practical row formatting demonstrates the power of data manipulation and presentation across various domains.
graph TD
A[Practical Formatting Scenarios] --> B[Financial Analysis]
A --> C[Performance Reporting]
A --> D[Scientific Data]
A --> E[Sales Analytics]
B --> F[Risk Assessment]
C --> G[KPI Visualization]
D --> H[Experimental Data]
E --> I[Sales Trend Analysis]
import pandas as pd
import numpy as np
def financial_performance_formatter(df):
def highlight_financial_metrics(row):
styles = [''] * len(row)
## Profit margin highlighting
if row['Profit Margin'] > 20:
styles[df.columns.get_loc('Profit Margin')] = 'background-color: green; color: white'
elif row['Profit Margin'] < 10:
styles[df.columns.get_loc('Profit Margin')] = 'background-color: red; color: white'
## Revenue growth highlighting
if row['Revenue Growth'] > 15:
styles[df.columns.get_loc('Revenue Growth')] = 'font-weight: bold'
return styles
return df.style.apply(highlight_financial_metrics, axis=1)
## Sample financial dataset
financial_data = pd.DataFrame({
'Company': ['Tech Corp', 'Retail Inc', 'Manufacturing Ltd'],
'Profit Margin': [25, 8, 15],
'Revenue Growth': [18, 5, 12]
})
formatted_financial_data = financial_performance_formatter(financial_data)
KPI Visualization Techniques
def performance_report_formatter(df):
def color_performance_metrics(row):
styles = [''] * len(row)
## Performance rating color coding
if row['Performance Rating'] >= 4:
styles[df.columns.get_loc('Performance Rating')] = 'background-color: #90EE90'
elif row['Performance Rating'] < 2:
styles[df.columns.get_loc('Performance Rating')] = 'background-color: #FFB6C1'
return styles
return df.style.apply(color_performance_metrics, axis=1)
performance_data = pd.DataFrame({
'Employee': ['John', 'Sarah', 'Michael'],
'Department': ['Sales', 'Marketing', 'Engineering'],
'Performance Rating': [4.5, 3.8, 2.1]
})
formatted_performance_data = performance_report_formatter(performance_data)
Experimental Results Visualization
def scientific_data_formatter(df):
def highlight_significant_results(row):
styles = [''] * len(row)
## Statistically significant results
if row['P-Value'] < 0.05:
styles[df.columns.get_loc('P-Value')] = 'color: green; font-weight: bold'
return styles
return df.style.apply(highlight_significant_results, axis=1)
experimental_data = pd.DataFrame({
'Experiment': ['Test A', 'Test B', 'Test C'],
'Result': [0.042, 0.078, 0.031],
'P-Value': [0.01, 0.12, 0.03]
})
formatted_scientific_data = scientific_data_formatter(experimental_data)
Technique |
Use Case |
Complexity |
Flexibility |
Color Coding |
Performance Tracking |
Low |
Medium |
Conditional Styling |
Financial Analysis |
Medium |
High |
Dynamic Formatting |
Scientific Reporting |
High |
Extensive |
Best Practices
- Keep formatting purpose-driven
- Maintain readability
- Use consistent color schemes
- Optimize performance
LabEx Insight
At LabEx, we emphasize practical data formatting skills that bridge theoretical knowledge with real-world applications. Our advanced Python courses provide comprehensive training in data visualization and manipulation techniques.
Error Handling and Robustness
def safe_data_formatter(df, formatter_func):
try:
return formatter_func(df)
except Exception as e:
print(f"Formatting error: {e}")
return df