Replication Patterns
Overview of Replication Patterns
Replication patterns define structured approaches to managing object copies in distributed systems and complex software architectures.
Common Replication Patterns
1. Master-Slave Pattern
graph TD
A[Master Node] --> B[Slave Node 1]
A --> C[Slave Node 2]
A --> D[Slave Node 3]
public class MasterSlaveReplication {
private Master master;
private List<Slave> slaves;
public void synchronizeData() {
for (Slave slave : slaves) {
slave.updateFrom(master);
}
}
}
2. Peer-to-Peer Pattern
graph TD
A[Node 1] <--> B[Node 2]
A <--> C[Node 3]
B <--> C
public class PeerNode {
private List<PeerNode> connectedNodes;
public void propagateUpdate(Object data) {
for (PeerNode peer : connectedNodes) {
peer.receiveUpdate(data);
}
}
}
Replication Pattern Comparison
Pattern |
Characteristics |
Pros |
Cons |
Master-Slave |
Centralized control |
Simple implementation |
Single point of failure |
Peer-to-Peer |
Distributed management |
High resilience |
Complex synchronization |
Distributed Cache |
Shared state |
Fast access |
Consistency challenges |
Advanced Replication Techniques
Write-Through Caching
public class WriteThoughCache {
private Map<String, Object> localCache;
private DatabaseRepository repository;
public void put(String key, Object value) {
localCache.put(key, value);
repository.save(key, value);
}
}
Read-Write Split
public class ReadWriteSplitReplication {
private ReadOnlyReplica[] readReplicas;
private WriteReplica writeReplica;
public Object read(String key) {
ReadOnlyReplica selectedReplica = selectOptimalReplica();
return selectedReplica.get(key);
}
}
Implementation Considerations
- Network latency
- Data consistency
- Conflict resolution
- Scalability requirements
Best Practices
- Choose appropriate pattern based on use case
- Implement robust error handling
- Design efficient synchronization mechanisms
LabEx recommends carefully evaluating system requirements when selecting replication patterns.