Advanced Rearrangement Patterns
Complex Rearrangement Strategies
Rearrangement Pattern Classification
Pattern |
Description |
Complexity |
Stable Sort |
Preserves relative order |
Medium |
Partial Sort |
Sort subset of elements |
High |
Custom Sorting |
User-defined sorting logic |
Advanced |
graph TD
A[Rearrangement Patterns] --> B[Sorting Techniques]
A --> C[Transformation Methods]
A --> D[Optimization Strategies]
B --> E[Stable Sort]
B --> F[Partial Sort]
C --> G[Filtering]
C --> H[Grouping]
D --> I[In-place Modification]
D --> J[Memory Efficient]
Advanced Sorting Techniques
1. Custom Comparator Sorting
package main
import (
"fmt"
"sort"
)
type Person struct {
Name string
Age int
}
func customSort() {
people := []Person{
{"Alice", 30},
{"Bob", 25},
{"Charlie", 35},
}
sort.Slice(people, func(i, j int) bool {
return people[i].Age < people[j].Age
})
fmt.Println("Sorted by Age:", people)
}
2. Stable Sorting Implementation
package main
import (
"fmt"
"sort"
)
type Item struct {
Value int
Priority int
}
func stableSort() {
items := []Item{
{10, 3},
{20, 2},
{30, 3},
{40, 1},
}
sort.Slice(items, func(i, j int) bool {
if items[i].Priority == items[j].Priority {
return items[i].Value < items[j].Value
}
return items[i].Priority < items[j].Priority
})
fmt.Println("Stable Sorted:", items)
}
Efficient Data Manipulation
package main
import (
"fmt"
"slices"
)
func advancedTransformation() {
numbers := []int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
// Filter even numbers
evenNumbers := slices.DeleteFunc(numbers, func(n int) bool {
return n%2 != 0
})
// Reverse in-place
slices.Reverse(evenNumbers)
fmt.Println("Transformed:", evenNumbers)
}
Memory-Efficient Rearrangement
package main
import (
"fmt"
"sort"
)
func memoryEfficientRearrangement() {
largeSlice := make([]int, 1000000)
// Efficient in-place sorting
sort.Slice(largeSlice, func(i, j int) bool {
return largeSlice[i] < largeSlice[j]
})
fmt.Printf("Sorted Slice Length: %d\n", len(largeSlice))
}
Advanced Pattern Matching
Complex Rearrangement Logic
package main
import (
"fmt"
"sort"
)
func complexRearrangement() {
data := []struct {
Group int
Value string
}{
{1, "apple"},
{2, "banana"},
{1, "cherry"},
{3, "date"},
}
sort.Slice(data, func(i, j int) bool {
if data[i].Group == data[j].Group {
return data[i].Value < data[j].Value
}
return data[i].Group < data[j].Group
})
fmt.Println("Complex Sorted:", data)
}
Best Practices
- Use built-in sorting functions
- Implement custom comparators for complex sorting
- Minimize memory allocations
- Choose appropriate rearrangement strategy
graph LR
A[Rearrangement Performance] --> B[Algorithm Complexity]
A --> C[Memory Usage]
A --> D[Execution Time]
B --> E[O(n log n)]
B --> F[O(nÂē)]
C --> G[In-place]
C --> H[Additional Allocation]
D --> I[Efficient Algorithms]
D --> J[Unnecessary Iterations]
Conclusion
Advanced rearrangement patterns in Golang provide powerful techniques for data manipulation. LabEx recommends continuous practice to master these sophisticated strategies.