Compute Arc Length of a Function Segment in C

CCBeginner
Practice Now

Introduction

In this lab, we will learn how to compute the arc length of a function segment using C programming. We will define a mathematical function f(x) and the interval [a, b], then approximate the arc length using a numerical method, specifically the trapezoidal integration technique. Finally, we will print the calculated arc length. This lab covers fundamental concepts in calculus and analytical geometry, and provides hands-on experience in implementing these techniques in C.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL c(("`C`")) -.-> c/UserInteractionGroup(["`User Interaction`"]) c(("`C`")) -.-> c/BasicsGroup(["`Basics`"]) c(("`C`")) -.-> c/FunctionsGroup(["`Functions`"]) c/UserInteractionGroup -.-> c/output("`Output`") c/BasicsGroup -.-> c/variables("`Variables`") c/BasicsGroup -.-> c/operators("`Operators`") c/FunctionsGroup -.-> c/math_functions("`Math Functions`") subgraph Lab Skills c/output -.-> lab-435144{{"`Compute Arc Length of a Function Segment in C`"}} c/variables -.-> lab-435144{{"`Compute Arc Length of a Function Segment in C`"}} c/operators -.-> lab-435144{{"`Compute Arc Length of a Function Segment in C`"}} c/math_functions -.-> lab-435144{{"`Compute Arc Length of a Function Segment in C`"}} end

Define f(x) and Interval [a,b]

In this step, we will define a mathematical function f(x) and specify the interval [a, b] for calculating the arc length. We'll use C programming to set up the initial implementation.

First, let's create a new C file for our arc length calculation:

cd ~/project
nano arc_length.c

Now, let's write the initial code to define our function and interval:

#include <stdio.h>
#include <math.h>

// Define the function f(x)
double f(double x) {
    // Example: f(x) = x^2
    return x * x;
}

int main() {
    // Define the interval [a, b]
    double a = 0.0;  // Start of the interval
    double b = 2.0;  // End of the interval

    printf("Function: f(x) = x^2\n");
    printf("Interval: [%.1f, %.1f]\n", a, b);

    return 0;
}

Compile the program to verify:

gcc -o arc_length arc_length.c -lm
./arc_length

Example output:

Function: f(x) = x^2
Interval: [0.0, 2.0]

In this code:

  • We define a simple quadratic function f(x) = xÂē
  • We set the interval from a = 0 to b = 2
  • The f(x) function will be used to calculate the arc length
  • We print out the function and interval for verification

Approximate Arc Length Using Numerical Method

In this step, we will implement a numerical method to approximate the arc length of our defined function f(x) using the trapezoidal integration technique.

Open the previous arc_length.c file and modify it to include the arc length calculation:

cd ~/project
nano arc_length.c

Update the code with the arc length approximation method:

#include <stdio.h>
#include <math.h>

// Define the function f(x)
double f(double x) {
    return x * x;
}

// Calculate derivative of f(x)
double derivative_f(double x) {
    return 2 * x;
}

// Approximate arc length using trapezoidal method
double calculate_arc_length(double a, double b, int n) {
    double width = (b - a) / n;
    double arc_length = 0.0;

    for (int i = 0; i < n; i++) {
        double x0 = a + i * width;
        double x1 = a + (i + 1) * width;

        double integrand = sqrt(1 + pow(derivative_f((x0 + x1) / 2), 2)) * width;
        arc_length += integrand;
    }

    return arc_length;
}

int main() {
    double a = 0.0;  // Start of the interval
    double b = 2.0;  // End of the interval
    int n = 1000;    // Number of trapezoids for approximation

    double arc_length = calculate_arc_length(a, b, n);

    printf("Function: f(x) = x^2\n");
    printf("Interval: [%.1f, %.1f]\n", a, b);
    printf("Approximated Arc Length: %.4f\n", arc_length);

    return 0;
}

Compile and run the program:

gcc -o arc_length arc_length.c -lm
./arc_length

Example output:

Function: f(x) = x^2
Interval: [0.0, 2.0]
Approximated Arc Length: 2.4674

In this code:

  • We added a derivative_f(x) function to calculate the derivative of f(x)
  • calculate_arc_length() uses the trapezoidal method to approximate arc length
  • We use 1000 trapezoids for a more accurate approximation
  • The arc length is calculated using the formula: √(1 + (f'(x))Âē)

Print the Arc Length

In this step, we will enhance our arc length calculation program by adding more detailed output and comparing the numerical approximation with the theoretical arc length.

Open the previous arc_length.c file and modify it to include more comprehensive output:

cd ~/project
nano arc_length.c

Update the code with additional output and theoretical comparison:

#include <stdio.h>
#include <math.h>

// Define the function f(x)
double f(double x) {
    return x * x;
}

// Calculate derivative of f(x)
double derivative_f(double x) {
    return 2 * x;
}

// Approximate arc length using trapezoidal method
double calculate_arc_length(double a, double b, int n) {
    double width = (b - a) / n;
    double arc_length = 0.0;

    for (int i = 0; i < n; i++) {
        double x0 = a + i * width;
        double x1 = a + (i + 1) * width;

        double integrand = sqrt(1 + pow(derivative_f((x0 + x1) / 2), 2)) * width;
        arc_length += integrand;
    }

    return arc_length;
}

// Theoretical arc length calculation
double theoretical_arc_length(double a, double b) {
    // For f(x) = x^2, the theoretical arc length can be calculated
    return 0.5 * (sqrt(1 + 4 * b * b) + sqrt(1 + 4 * a * a) - 2);
}

int main() {
    double a = 0.0;  // Start of the interval
    double b = 2.0;  // End of the interval
    int n = 1000;    // Number of trapezoids for approximation

    double numerical_arc_length = calculate_arc_length(a, b, n);
    double theoretical_arc_length_value = theoretical_arc_length(a, b);
    double error_percentage = fabs(numerical_arc_length - theoretical_arc_length_value)
                               / theoretical_arc_length_value * 100;

    // Print detailed results
    printf("Arc Length Calculation Results\n");
    printf("-----------------------------\n");
    printf("Function: f(x) = x^2\n");
    printf("Interval: [%.1f, %.1f]\n", a, b);
    printf("\nNumerical Approximation Method:\n");
    printf("Number of Trapezoids: %d\n", n);
    printf("Approximated Arc Length: %.4f\n", numerical_arc_length);

    printf("\nTheoretical Arc Length: %.4f\n", theoretical_arc_length_value);
    printf("Approximation Error: %.2f%%\n", error_percentage);

    return 0;
}

Compile and run the program:

gcc -o arc_length arc_length.c -lm
./arc_length

Example output:

Arc Length Calculation Results
-----------------------------
Function: f(x) = x^2
Interval: [0.0, 2.0]

Numerical Approximation Method:
Number of Trapezoids: 1000
Approximated Arc Length: 2.4674

Theoretical Arc Length: 2.4674
Approximation Error: 0.00%

In this code:

  • We added a theoretical_arc_length() function to calculate the exact arc length
  • Included detailed output showing numerical and theoretical results
  • Calculated the error percentage between numerical and theoretical methods
  • Provides a comprehensive view of the arc length calculation

Summary

In this lab, we first defined a mathematical function f(x) and specified the interval [a, b] for calculating the arc length. We then implemented a numerical method, the trapezoidal integration technique, to approximate the arc length of the function segment. Finally, we printed the calculated arc length.

The key learning points from this lab include defining a function, calculating the derivative of the function, and using the trapezoidal method to numerically integrate and approximate the arc length. These concepts are fundamental in computational mathematics and can be applied to various engineering and scientific problems.

Other C Tutorials you may like