確率校正曲線

Machine LearningMachine LearningBeginner
今すぐ練習

This tutorial is from open-source community. Access the source code

💡 このチュートリアルは英語版からAIによって翻訳されています。原文を確認するには、 ここをクリックしてください

はじめに

この実験では、分類モデルの予測確率を評価するために校正曲線をどのように使用するか学びます。scikit-learnを使用して分類を行い、結果を視覚化します。

VMのヒント

VMの起動が完了したら、左上隅をクリックしてノートブックタブに切り替え、Jupyter Notebookを使って練習しましょう。

時々、Jupyter Notebookが読み込み終了するまで数秒待つ必要がある場合があります。Jupyter Notebookの制限により、操作の検証を自動化することはできません。

学習中に問題に遭遇した場合は、Labbyにお問い合わせください。セッション後にフィードバックを提供してください。すぐに問題を解決いたします。


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL sklearn(("Sklearn")) -.-> sklearn/UtilitiesandDatasetsGroup(["Utilities and Datasets"]) ml(("Machine Learning")) -.-> ml/FrameworkandSoftwareGroup(["Framework and Software"]) sklearn(("Sklearn")) -.-> sklearn/CoreModelsandAlgorithmsGroup(["Core Models and Algorithms"]) sklearn(("Sklearn")) -.-> sklearn/ModelSelectionandEvaluationGroup(["Model Selection and Evaluation"]) sklearn/CoreModelsandAlgorithmsGroup -.-> sklearn/linear_model("Linear Models") sklearn/CoreModelsandAlgorithmsGroup -.-> sklearn/naive_bayes("Naive Bayes") sklearn/CoreModelsandAlgorithmsGroup -.-> sklearn/svm("Support Vector Machines") sklearn/ModelSelectionandEvaluationGroup -.-> sklearn/model_selection("Model Selection") sklearn/ModelSelectionandEvaluationGroup -.-> sklearn/metrics("Metrics") sklearn/ModelSelectionandEvaluationGroup -.-> sklearn/calibration("Probability Calibration") sklearn/UtilitiesandDatasetsGroup -.-> sklearn/datasets("Datasets") ml/FrameworkandSoftwareGroup -.-> ml/sklearn("scikit-learn") subgraph Lab Skills sklearn/linear_model -.-> lab-49073{{"確率校正曲線"}} sklearn/naive_bayes -.-> lab-49073{{"確率校正曲線"}} sklearn/svm -.-> lab-49073{{"確率校正曲線"}} sklearn/model_selection -.-> lab-49073{{"確率校正曲線"}} sklearn/metrics -.-> lab-49073{{"確率校正曲線"}} sklearn/calibration -.-> lab-49073{{"確率校正曲線"}} sklearn/datasets -.-> lab-49073{{"確率校正曲線"}} ml/sklearn -.-> lab-49073{{"確率校正曲線"}} end

データセット

100,000個のサンプルと20個の特徴量を持つ合成二値分類データセットを使用します。20個の特徴量のうち、情報的なものは2個だけで、10個は冗長(情報的な特徴量のランダムな組み合わせ)で、残りの8個は非情報的(ランダムな数)です。100,000個のサンプルのうち、1,000個はモデルのフィッティングに使用され、残りはテストに使用されます。

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

X, y = make_classification(
    n_samples=100_000, n_features=20, n_informative=2, n_redundant=10, random_state=42
)

X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.99, random_state=42
)

校正曲線

いくつかの分類器を校正曲線を用いて比較します。まず、以下を比較します。

  • ロジスティック回帰(ベースラインとして使用)
  • 未校正のガウスナイーブベイズ
  • 等張及びシグモイド校正付きのガウスナイーブベイズ
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec

from sklearn.calibration import CalibratedClassifierCV, CalibrationDisplay
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB

lr = LogisticRegression(C=1.0)
gnb = GaussianNB()
gnb_isotonic = CalibratedClassifierCV(gnb, cv=2, method="isotonic")
gnb_sigmoid = CalibratedClassifierCV(gnb, cv=2, method="sigmoid")

clf_list = [
    (lr, "Logistic"),
    (gnb, "Naive Bayes"),
    (gnb_isotonic, "Naive Bayes + Isotonic"),
    (gnb_sigmoid, "Naive Bayes + Sigmoid"),
]

fig = plt.figure(figsize=(10, 10))
gs = GridSpec(4, 2)
colors = plt.get_cmap("Dark2")

ax_calibration_curve = fig.add_subplot(gs[:2, :2])
calibration_displays = {}
for i, (clf, name) in enumerate(clf_list):
    clf.fit(X_train, y_train)
    display = CalibrationDisplay.from_estimator(
        clf,
        X_test,
        y_test,
        n_bins=10,
        name=name,
        ax=ax_calibration_curve,
        color=colors(i),
    )
    calibration_displays[name] = display

ax_calibration_curve.grid()
ax_calibration_curve.set_title("Calibration plots (Naive Bayes)")

## Add histogram
grid_positions = [(2, 0), (2, 1), (3, 0), (3, 1)]
for i, (_, name) in enumerate(clf_list):
    row, col = grid_positions[i]
    ax = fig.add_subplot(gs[row, col])

    ax.hist(
        calibration_displays[name].y_prob,
        range=(0, 1),
        bins=10,
        label=name,
        color=colors(i),
    )
    ax.set(title=name, xlabel="Mean predicted probability", ylabel="Count")

plt.tight_layout()
plt.show()

線形サポートベクター分類器

次に、以下を比較します。

  • ロジスティック回帰(ベースライン)
  • 未校正の線形サポートベクター分類器(SVC)
  • 等張及びシグモイド校正付きの線形SVC
import numpy as np

from sklearn.svm import LinearSVC


class NaivelyCalibratedLinearSVC(LinearSVC):
    """LinearSVC with `predict_proba` method that naively scales
    `decision_function` output for binary classification."""

    def fit(self, X, y):
        super().fit(X, y)
        df = self.decision_function(X)
        self.df_min_ = df.min()
        self.df_max_ = df.max()

    def predict_proba(self, X):
        """Min-max scale output of `decision_function` to [0, 1]."""
        df = self.decision_function(X)
        calibrated_df = (df - self.df_min_) / (self.df_max_ - self.df_min_)
        proba_pos_class = np.clip(calibrated_df, 0, 1)
        proba_neg_class = 1 - proba_pos_class
        proba = np.c_[proba_neg_class, proba_pos_class]
        return proba

lr = LogisticRegression(C=1.0)
svc = NaivelyCalibratedLinearSVC(max_iter=10_000, dual="auto")
svc_isotonic = CalibratedClassifierCV(svc, cv=2, method="isotonic")
svc_sigmoid = CalibratedClassifierCV(svc, cv=2, method="sigmoid")

clf_list = [
    (lr, "Logistic"),
    (svc, "SVC"),
    (svc_isotonic, "SVC + Isotonic"),
    (svc_sigmoid, "SVC + Sigmoid"),
]

fig = plt.figure(figsize=(10, 10))
gs = GridSpec(4, 2)

ax_calibration_curve = fig.add_subplot(gs[:2, :2])
calibration_displays = {}
for i, (clf, name) in enumerate(clf_list):
    clf.fit(X_train, y_train)
    display = CalibrationDisplay.from_estimator(
        clf,
        X_test,
        y_test,
        n_bins=10,
        name=name,
        ax=ax_calibration_curve,
        color=colors(i),
    )
    calibration_displays[name] = display

ax_calibration_curve.grid()
ax_calibration_curve.set_title("Calibration plots (SVC)")

## Add histogram
grid_positions = [(2, 0), (2, 1), (3, 0), (3, 1)]
for i, (_, name) in enumerate(clf_list):
    row, col = grid_positions[i]
    ax = fig.add_subplot(gs[row, col])

    ax.hist(
        calibration_displays[name].y_prob,
        range=(0, 1),
        bins=10,
        label=name,
        color=colors(i),
    )
    ax.set(title=name, xlabel="Mean predicted probability", ylabel="Count")

plt.tight_layout()
plt.show()

評価

いくつかの分類指標を用いて分類器を評価します:ブライアースコア損失、ログ損失、適合率、再現率、F1スコア、およびROC AUC。

from collections import defaultdict

import pandas as pd

from sklearn.metrics import (
    precision_score,
    recall_score,
    f1_score,
    brier_score_loss,
    log_loss,
    roc_auc_score,
)

scores = defaultdict(list)
for i, (clf, name) in enumerate(clf_list):
    clf.fit(X_train, y_train)
    y_prob = clf.predict_proba(X_test)
    y_pred = clf.predict(X_test)
    scores["Classifier"].append(name)

    for metric in [brier_score_loss, log_loss, roc_auc_score]:
        score_name = metric.__name__.replace("_", " ").replace("score", "").capitalize()
        scores[score_name].append(metric(y_test, y_prob[:, 1]))

    for metric in [precision_score, recall_score, f1_score]:
        score_name = metric.__name__.replace("_", " ").replace("score", "").capitalize()
        scores[score_name].append(metric(y_test, y_pred))

    score_df = pd.DataFrame(scores).set_index("Classifier")
    score_df.round(decimals=3)

まとめ

分類モデルの予測確率を評価するために校正曲線をどのように使用するかを学びました。校正曲線を用いていくつかの分類器を比較し、いくつかの分類指標で評価しました。また、パラメトリックなシグモイド校正は、ベース分類器の校正曲線がシグモイドの場合には対応できますが、転置シグモイドの場合には対応できません。非パラメトリックな等張校正は、両方の場合に対応できますが、良好な結果を得るためにはより多くのデータが必要になる場合があります。