Testcase: linked-list
A common way to implement a linked-list is via enums
:
use crate::List::*;
enum List {
// Cons: Tuple struct that wraps an element and a pointer to the next node
Cons(u32, Box<List>),
// Nil: A node that signifies the end of the linked list
Nil,
}
// Methods can be attached to an enum
impl List {
// Create an empty list
fn new() -> List {
// `Nil` has type `List`
Nil
}
// Consume a list, and return the same list with a new element at its front
fn prepend(self, elem: u32) -> List {
// `Cons` also has type List
Cons(elem, Box::new(self))
}
// Return the length of the list
fn len(&self) -> u32 {
// `self` has to be matched, because the behavior of this method
// depends on the variant of `self`
// `self` has type `&List`, and `*self` has type `List`, matching on a
// concrete type `T` is preferred over a match on a reference `&T`
// after Rust 2018 you can use self here and tail (with no ref) below as well,
// rust will infer &s and ref tail.
// See https://doc.rust-lang.org/edition-guide/rust-2018/ownership-and-lifetimes/default-match-bindings.html
match *self {
// Can't take ownership of the tail, because `self` is borrowed;
// instead take a reference to the tail
Cons(_, ref tail) => 1 + tail.len(),
// Base Case: An empty list has zero length
Nil => 0
}
}
// Return representation of the list as a (heap allocated) string
fn stringify(&self) -> String {
match *self {
Cons(head, ref tail) => {
// `format!` is similar to `print!`, but returns a heap
// allocated string instead of printing to the console
format!("{}, {}", head, tail.stringify())
},
Nil => {
format!("Nil")
},
}
}
}
fn main() {
// Create an empty linked list
let mut list = List::new();
// Prepend some elements
list = list.prepend(1);
list = list.prepend(2);
list = list.prepend(3);
// Show the final state of the list
println!("linked list has length: {}", list.len());
println!("{}", list.stringify());
}