Pandas DataFrame Ge Method

PythonPythonBeginner
Practice Now

Introduction

In this lab, we will learn how to use the ge() method in Pandas DataFrame to perform element-wise comparison. The ge() method returns a DataFrame of boolean values, indicating whether each element is greater than or equal to the corresponding element in another DataFrame or a scalar value.

VM Tips

After the VM startup is done, click the top left corner to switch to the Notebook tab to access Jupyter Notebook for practice.

Sometimes, you may need to wait a few seconds for Jupyter Notebook to finish loading. The validation of operations cannot be automated because of limitations in Jupyter Notebook.

If you face issues during learning, feel free to ask Labby. Provide feedback after the session, and we will promptly resolve the problem for you.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL python(("`Python`")) -.-> python/DataStructuresGroup(["`Data Structures`"]) python(("`Python`")) -.-> python/ModulesandPackagesGroup(["`Modules and Packages`"]) python(("`Python`")) -.-> python/DataScienceandMachineLearningGroup(["`Data Science and Machine Learning`"]) python(("`Python`")) -.-> python/FunctionsGroup(["`Functions`"]) python/DataStructuresGroup -.-> python/lists("`Lists`") python/DataStructuresGroup -.-> python/tuples("`Tuples`") python/DataStructuresGroup -.-> python/dictionaries("`Dictionaries`") python/ModulesandPackagesGroup -.-> python/importing_modules("`Importing Modules`") python/DataScienceandMachineLearningGroup -.-> python/numerical_computing("`Numerical Computing`") python/DataScienceandMachineLearningGroup -.-> python/data_analysis("`Data Analysis`") python/FunctionsGroup -.-> python/build_in_functions("`Build-in Functions`") subgraph Lab Skills python/lists -.-> lab-68628{{"`Pandas DataFrame Ge Method`"}} python/tuples -.-> lab-68628{{"`Pandas DataFrame Ge Method`"}} python/dictionaries -.-> lab-68628{{"`Pandas DataFrame Ge Method`"}} python/importing_modules -.-> lab-68628{{"`Pandas DataFrame Ge Method`"}} python/numerical_computing -.-> lab-68628{{"`Pandas DataFrame Ge Method`"}} python/data_analysis -.-> lab-68628{{"`Pandas DataFrame Ge Method`"}} python/build_in_functions -.-> lab-68628{{"`Pandas DataFrame Ge Method`"}} end

Import the necessary libraries

To begin, we need to import the necessary libraries: Pandas and NumPy.

import pandas as pd
import numpy as np

Create a DataFrame

Next, let's create a DataFrame to work with.

df = pd.DataFrame({'A': [200, 500], 'B': [60, 250], 'C': [150, 1]})
print("The DataFrame is:")
print(df)

This will create a DataFrame with three columns: 'A', 'B', and 'C'. It contains two rows of data.

Perform comparison using a scalar value

Now, let's perform a comparison using a scalar value. We will use the ge() method to check if each element in the DataFrame is greater than or equal to 200.

result = df.ge(200)
print("After applying ge function:")
print(result)

The ge() method is applied to the DataFrame df with the scalar value 200. The resulting DataFrame result will contain boolean values, indicating whether each element in df is greater than or equal to 200.

Perform comparison using a Series

Next, let's perform a comparison using a Series. We will create a Series with three values: 150, 200, and 150. Then, we will use the ge() method to compare the DataFrame df with this Series.

series = pd.Series([150, 200, 150])
result = df.ge(series, axis=0)
print("After applying ge function:")
print(result)

The ge() method is applied to the DataFrame df with the Series series. The axis parameter is set to 0, indicating that we want to compare the rows of df with the elements of series. The resulting DataFrame result will contain boolean values, indicating whether each element in df is greater than or equal to the corresponding element in series.

Perform comparison using another DataFrame

Lastly, let's perform a comparison using another DataFrame. We will create another DataFrame df2 and compare it with the original DataFrame df using the ge() method.

df2 = pd.DataFrame({'A': [200, 550], 'B': [65, 251], 'C': [100, 10]})
result = df.ge(df2)
print("After applying ge function:")
print(result)

The ge() method is applied to the DataFrame df with the DataFrame df2. The resulting DataFrame result will contain boolean values, indicating whether each element in df is greater than or equal to the corresponding element in df2.

Summary

In this lab, we learned how to use the ge() method in Pandas DataFrame to perform element-wise comparison. We saw how to compare a DataFrame with a scalar value, a Series, and another DataFrame. By applying the ge() method, we obtained a DataFrame of boolean values indicating the result of the comparison. This method is useful for various data analysis tasks, such as filtering data based on certain conditions.

Other Python Tutorials you may like