Advanced Debugging Skills
Profiling Techniques
graph TD
A[Performance Profiling] --> B[Time Profiling]
A --> C[Memory Profiling]
A --> D[Code Performance Analysis]
Using cProfile
import cProfile
def complex_computation(n):
return sum(i**2 for i in range(n))
def main():
cProfile.run('complex_computation(10000)')
if __name__ == '__main__':
main()
Memory Profiling with memory_profiler
## Ubuntu installation
sudo pip3 install memory_profiler
from memory_profiler import profile
@profile
def memory_intensive_function():
large_list = [x for x in range(1000000)]
return sum(large_list)
memory_intensive_function()
Advanced Exception Handling
Custom Exception Handling
class CustomDebugError(Exception):
def __init__(self, message, error_code):
self.message = message
self.error_code = error_code
super().__init__(self.message)
def robust_function(value):
try:
if value < 0:
raise CustomDebugError("Negative value not allowed", 400)
return value * 2
except CustomDebugError as e:
print(f"Error: {e.message}, Code: {e.error_code}")
Debugging Techniques
Technique |
Description |
Use Case |
Conditional Breakpoints |
Breakpoints with specific conditions |
Complex logic debugging |
Remote Debugging |
Debug code running on different machines |
Distributed systems |
Logging with Context |
Detailed logging with execution context |
Production environment troubleshooting |
Automated Testing and Debugging
Unit Testing with pytest
## Ubuntu installation
sudo pip3 install pytest
def divide(a, b):
return a / b
def test_divide():
assert divide(10, 2) == 5
try:
divide(10, 0)
except ZeroDivisionError:
print("Zero division handled correctly")
Advanced Debugging Workflow
graph TD
A[Identify Issue] --> B[Reproduce Problem]
B --> C[Isolate Code Section]
C --> D[Use Profiling Tools]
D --> E[Analyze Performance]
E --> F[Implement Optimization]
F --> G[Validate Solution]
Debugging in Different Environments
Docker and Containerized Debugging
- Use
--privileged
flag
- Mount debug volumes
- Use interactive debugging modes
Cloud and Distributed Systems Debugging
- Centralized logging
- Distributed tracing
- Microservices monitoring
Best Practices
- Use systematic debugging approaches
- Leverage advanced profiling tools
- Implement comprehensive error handling
- Write testable code
At LabEx, we emphasize continuous learning and mastery of advanced debugging techniques to solve complex programming challenges.