Error Handling
Principles of Effective Error Handling
Error handling is crucial in range validation to provide meaningful feedback and prevent application failures. This section explores comprehensive strategies for managing range-related errors.
Error Handling Strategies
graph TD
A[Error Handling Strategies] --> B[Exception Raising]
A --> C[Logging]
A --> D[Graceful Degradation]
A --> E[Custom Error Types]
Exception Handling Techniques
Basic Exception Handling
class RangeValidationError(ValueError):
"""Custom exception for range validation"""
def __init__(self, value, min_val, max_val):
self.value = value
self.min_val = min_val
self.max_val = max_val
self.message = f"Value {value} out of range [{min_val}, {max_val}]"
super().__init__(self.message)
def validate_with_exception(value, min_val, max_val):
"""
Raise custom exception for out-of-range values
"""
if not (min_val <= value <= max_val):
raise RangeValidationError(value, min_val, max_val)
return value
## Usage example
try:
result = validate_with_exception(150, 0, 100)
except RangeValidationError as e:
print(f"Validation Error: {e.message}")
Advanced Error Handling Patterns
Comprehensive Validation Function
def robust_range_validator(value, config):
"""
Advanced validation with multiple error handling mechanisms
"""
try:
## Type checking
if not isinstance(value, config.get('type', int)):
raise TypeError(f"Expected {config.get('type', int)}, got {type(value)}")
## Range validation
if 'min' in config and value < config['min']:
raise ValueError(f"Value too low. Minimum: {config['min']}")
if 'max' in config and value > config['max']:
raise ValueError(f"Value too high. Maximum: {config['max']}")
return value
except (TypeError, ValueError) as e:
## Logging error
print(f"Validation Error: {e}")
return None
## Usage
user_config = {
'type': int,
'min': 0,
'max': 100
}
print(robust_range_validator(50, user_config)) ## Valid
print(robust_range_validator(150, user_config)) ## Handles error
Error Handling Approaches
Approach |
Description |
Use Case |
Silent Fail |
Return None or Default |
Low-risk scenarios |
Exception Raising |
Halt execution |
Critical validations |
Logging |
Record error details |
Diagnostic purposes |
Fallback Value |
Provide alternative |
Flexible systems |
Best Practices
- Create specific, meaningful error messages
- Use custom exception classes
- Log errors for debugging
- Provide clear error context
- Handle errors at appropriate levels
Logging Integration
import logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def validated_process(value, min_val, max_val):
try:
if not (min_val <= value <= max_val):
logger.error(f"Value {value} out of range [{min_val}, {max_val}]")
return None
return value
except Exception as e:
logger.exception("Unexpected error in validation")
return None
At LabEx, we emphasize the importance of robust error handling as a critical component of writing reliable Python applications. Proper error management ensures your code can gracefully handle unexpected inputs and provide meaningful feedback.