Detecting Signature Errors
Types of Signature Errors
Signature errors occur when function calls do not match the defined function signature:
Error Type |
Description |
Example |
TypeError |
Incorrect parameter type |
Passing a string where an integer is expected |
ArgumentError |
Incorrect number of arguments |
Too few or too many arguments |
ValueError |
Invalid argument value |
Passing negative value to a function expecting positive |
Detecting Errors Manually
def validate_age(age: int) -> bool:
if not isinstance(age, int):
raise TypeError("Age must be an integer")
if age < 0:
raise ValueError("Age cannot be negative")
return True
try:
validate_age("twenty") ## Raises TypeError
validate_age(-5) ## Raises ValueError
except (TypeError, ValueError) as e:
print(f"Error detected: {e}")
graph TD
A[Type Checking Tools] --> B[mypy]
A --> C[pyright]
A --> D[pytype]
Static Type Checking with mypy
def process_data(data: list[int]) -> int:
return sum(data)
## mypy will detect type errors before runtime
process_data([1, 2, "3"]) ## Static type error
Runtime Signature Inspection
import inspect
def check_signature(func, *args, **kwargs):
try:
inspect.signature(func).bind(*args, **kwargs)
return True
except TypeError as e:
print(f"Signature error: {e}")
return False
def add(a: int, b: int) -> int:
return a + b
check_signature(add, 1, 2) ## Returns True
check_signature(add, "1", "2") ## Prints signature error
Advanced Error Detection Techniques
- Decorator-based Validation
def validate_signature(func):
def wrapper(*args, **kwargs):
sig = inspect.signature(func)
sig.bind(*args, **kwargs)
return func(*args, **kwargs)
return wrapper
@validate_signature
def divide(a: int, b: int) -> float:
return a / b
Common Pitfalls
- Ignoring type hints
- Not using type checking tools
- Incomplete error handling
LabEx recommends implementing comprehensive signature validation to ensure code reliability.