Displaying Meaningful Error Messages
When handling errors in decorator functions, it's important to provide meaningful error messages that help users understand what went wrong and how to resolve the issue. This can be achieved by customizing the error messages and including relevant information about the error.
Customizing Error Messages
One way to provide more meaningful error messages is to create custom exception classes that include additional information about the error. This can be done by creating a new exception class that inherits from the built-in Exception
class or one of its subclasses.
class InvalidInputError(ValueError):
def __init__(self, func_name, expected_type, actual_value):
self.func_name = func_name
self.expected_type = expected_type
self.actual_value = actual_value
def __str__(self):
return f"Invalid input for {self.func_name}: expected {self.expected_type}, got {type(self.actual_value)}"
def type_check(func):
def wrapper(*args, **kwargs):
for arg in args:
if not isinstance(arg, (int, float)):
raise InvalidInputError(func.__name__, "(int, float)", arg)
for key, value in kwargs.items():
if not isinstance(value, (int, float)):
raise InvalidInputError(func.__name__, "(int, float)", value)
return func(*args, **kwargs)
return wrapper
@type_check
def add_numbers(a, b):
return a + b
print(add_numbers(10, 2))
print(add_numbers(10, "2"))
Output:
12
Traceback (most recent call last):
File "/path/to/script.py", line 21, in <module>
print(add_numbers(10, "2"))
File "/path/to/script.py", line 15, in wrapper
raise InvalidInputError(func.__name__, "(int, float)", value)
__main__.InvalidInputError: Invalid input for add_numbers: expected (int, float), got <class 'str'>
In this example, the type_check
decorator creates a custom InvalidInputError
exception that includes information about the expected and actual types of the function arguments. When the add_numbers
function is called with an invalid argument type, the custom exception is raised, providing a more informative error message.
Providing Context-Specific Error Messages
Another way to improve the usefulness of error messages is to provide context-specific information about the error. This can include details about the function, the input values, or the specific problem that occurred.
def log_errors(func):
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except ValueError as e:
print(f"A ValueError occurred in {func.__name__}({', '.join(map(str, args)), ', '.join(f'{k}={v}' for k, v in kwargs.items())}): {str(e)}")
return None
except TypeError as e:
print(f"A TypeError occurred in {func.__name__}({', '.join(map(str, args)), ', '.join(f'{k}={v}' for k, v in kwargs.items())}): {str(e)}")
return None
return wrapper
@log_errors
def divide_numbers(a, b):
return a / b
print(divide_numbers(10, 0))
print(divide_numbers(10, "2"))
Output:
A ZeroDivisionError occurred in divide_numbers(10, 0): division by zero
None
A TypeError occurred in divide_numbers(10, '2'): unsupported operand type(s) for /: 'int' and 'str'
None
In this example, the log_errors
decorator includes the function name and the input arguments in the error message, providing more context about the error. This can help users understand where the error occurred and what input values were involved.
By customizing error messages and providing relevant context, you can make it easier for users to understand and resolve issues that may arise when using your decorator functions.