Advanced Techniques
Metaclasses provide powerful type validation mechanisms:
class TypeValidator(type):
def __new__(cls, name, bases, attrs):
for key, value in attrs.items():
if key.startswith('validate_'):
attrs[key] = cls.create_type_validator(value)
return super().__new__(cls, name, bases, attrs)
@staticmethod
def create_type_validator(func):
def wrapper(*args, **kwargs):
for arg in args:
if not isinstance(arg, (int, float, str)):
raise TypeError("Invalid argument type")
return func(*args, **kwargs)
return wrapper
Runtime Type Checking Strategies
graph TD
A[Runtime Type Checking] --> B{Approach}
B --> C[Decorator-based]
B --> D[Metaclass-based]
B --> E[Dynamic Validation]
Decorator-Based Type Validation
def type_check(*types):
def decorator(func):
def wrapper(*args, **kwargs):
for arg, expected_type in zip(args, types):
if not isinstance(arg, expected_type):
raise TypeError(f"Expected {expected_type}, got {type(arg)}")
return func(*args, **kwargs)
return wrapper
return decorator
@type_check(int, str)
def process_data(number, text):
return f"{text}: {number * 2}"
Advanced Typing Techniques
Technique |
Use Case |
Complexity |
Type Hints |
Static Type Checking |
Low |
Metaclass Validation |
Runtime Type Enforcement |
High |
Decorator Validation |
Flexible Type Checking |
Medium |
Generic Type Handling
from typing import TypeVar, Generic
T = TypeVar('T')
class SafeContainer(Generic[T]):
def __init__(self, value: T):
self._value = value
def get_value(self) -> T:
return self._value
def validate_type(self, expected_type: type) -> bool:
return isinstance(self._value, expected_type)
Dynamic Type Introspection
def deep_type_check(obj, expected_structure):
if isinstance(obj, dict):
return all(
key in obj and isinstance(obj[key], type_)
for key, type_ in expected_structure.items()
)
return False
## Example usage
data = {
'name': 'LabEx',
'age': 25
}
structure = {
'name': str,
'age': int
}
print(deep_type_check(data, structure)) ## True
- Minimize runtime type checking
- Use static type hints when possible
- Implement selective validation
- Leverage LabEx optimization techniques
Error Handling and Logging
import logging
from functools import wraps
def type_safe_log(func):
@wraps(func)
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except TypeError as e:
logging.error(f"Type error in {func.__name__}: {e}")
raise
return wrapper
Emerging Trends
- Static type checkers (mypy)
- Runtime type validation libraries
- Gradual typing approaches
By mastering these advanced techniques, you'll develop more robust and flexible Python type checking strategies with LabEx's cutting-edge methodologies.