Using the Add Function

NumPyNumPyBeginner
Practice Now

Introduction

In this tutorial, we will go through the steps to use the add() function of the NumPy library. The add() function can concatenate the elements of two arrays. However, it requires that both arrays are of the same shape.

Prerequisites

To follow this tutorial, you need to have a basic understanding of Python and NumPy.

VM Tips

After the VM startup is done, click the top left corner to switch to the Notebook tab to access Jupyter Notebook for practice.

Sometimes, you may need to wait a few seconds for Jupyter Notebook to finish loading. The validation of operations cannot be automated because of limitations in Jupyter Notebook.

If you face issues during learning, feel free to ask Labby. Provide feedback after the session, and we will promptly resolve the problem for you.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL python(("`Python`")) -.-> python/DataStructuresGroup(["`Data Structures`"]) python(("`Python`")) -.-> python/ModulesandPackagesGroup(["`Modules and Packages`"]) python(("`Python`")) -.-> python/DataScienceandMachineLearningGroup(["`Data Science and Machine Learning`"]) python(("`Python`")) -.-> python/FunctionsGroup(["`Functions`"]) numpy(("`NumPy`")) -.-> numpy/IndexingandSlicingGroup(["`Indexing and Slicing`"]) python/DataStructuresGroup -.-> python/lists("`Lists`") python/DataStructuresGroup -.-> python/tuples("`Tuples`") python/ModulesandPackagesGroup -.-> python/importing_modules("`Importing Modules`") python/DataScienceandMachineLearningGroup -.-> python/numerical_computing("`Numerical Computing`") python/FunctionsGroup -.-> python/build_in_functions("`Build-in Functions`") numpy/IndexingandSlicingGroup -.-> numpy/bool_idx("`Boolean Indexing`") numpy/IndexingandSlicingGroup -.-> numpy/fancy_idx("`Fancy Indexing`") subgraph Lab Skills python/lists -.-> lab-86383{{"`Using the Add Function`"}} python/tuples -.-> lab-86383{{"`Using the Add Function`"}} python/importing_modules -.-> lab-86383{{"`Using the Add Function`"}} python/numerical_computing -.-> lab-86383{{"`Using the Add Function`"}} python/build_in_functions -.-> lab-86383{{"`Using the Add Function`"}} numpy/bool_idx -.-> lab-86383{{"`Using the Add Function`"}} numpy/fancy_idx -.-> lab-86383{{"`Using the Add Function`"}} end

Import NumPy

The first step is to import the NumPy library.

import numpy as np

Create Input Arrays

Next, let's create two input arrays that we can use to test the add() function.

x1 = ['Hello', 'World']
x2 = ['NumPy', 'Tutorial']

Apply the add() Function

To concatenate the elements of the two input arrays, we can use the add() function as shown below.

result = np.char.add(x1, x2)

Print the Result

Let's print the concatenated string array that we obtained in the previous step.

print(result)

The output will be:

array(['HelloNumPy', 'WorldTutorial'], dtype='<U14')

Apply the add() Function with Single Element Arrays

We can also apply the add() function if both arrays only have one element.

x1 = ['Hello']
x2 = ['LabEx!']
result = np.char.add(x1, x2)
print(result)

The output will be:

array(['HelloLabEx!'], dtype='<U18')

Apply the add() Function with Different Length Arrays

Finally, let's see what the add() function does when the input arrays have different lengths.

x1 = ['Welcome', 'to', 'LabEx']
x2 = ['Best Place', 'Forlearning']
result = np.char.add(x1, x2)
print(result)

The output will be a ValueError:

ValueError: shape mismatch: objects cannot be broadcast to a single shape

This is because the two arrays have different lengths and cannot be concatenated.

Summary

In this tutorial, we have learned how to use the add() function in NumPy to concatenate elements of two arrays. We also learned that both arrays must be of the same shape for the function to work properly.

Other NumPy Tutorials you may like