Probability Calibration for 3-Class Classification

Machine LearningMachine LearningBeginner
Practice Now

This tutorial is from open-source community. Access the source code

Introduction

This lab demonstrates how to use sigmoid calibration for 3-class classification in Python using scikit-learn. It shows how sigmoid calibration changes predicted probabilities and how it can be used to improve model performance.

VM Tips

After the VM startup is done, click the top left corner to switch to the Notebook tab to access Jupyter Notebook for practice.

Sometimes, you may need to wait a few seconds for Jupyter Notebook to finish loading. The validation of operations cannot be automated because of limitations in Jupyter Notebook.

If you face issues during learning, feel free to ask Labby. Provide feedback after the session, and we will promptly resolve the problem for you.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL sklearn(("`Sklearn`")) -.-> sklearn/ModelSelectionandEvaluationGroup(["`Model Selection and Evaluation`"]) sklearn(("`Sklearn`")) -.-> sklearn/UtilitiesandDatasetsGroup(["`Utilities and Datasets`"]) sklearn(("`Sklearn`")) -.-> sklearn/CoreModelsandAlgorithmsGroup(["`Core Models and Algorithms`"]) ml(("`Machine Learning`")) -.-> ml/FrameworkandSoftwareGroup(["`Framework and Software`"]) sklearn/ModelSelectionandEvaluationGroup -.-> sklearn/metrics("`Metrics`") sklearn/ModelSelectionandEvaluationGroup -.-> sklearn/calibration("`Probability Calibration`") sklearn/UtilitiesandDatasetsGroup -.-> sklearn/datasets("`Datasets`") sklearn/CoreModelsandAlgorithmsGroup -.-> sklearn/ensemble("`Ensemble Methods`") ml/FrameworkandSoftwareGroup -.-> ml/sklearn("`scikit-learn`") subgraph Lab Skills sklearn/metrics -.-> lab-49074{{"`Probability Calibration for 3-Class Classification`"}} sklearn/calibration -.-> lab-49074{{"`Probability Calibration for 3-Class Classification`"}} sklearn/datasets -.-> lab-49074{{"`Probability Calibration for 3-Class Classification`"}} sklearn/ensemble -.-> lab-49074{{"`Probability Calibration for 3-Class Classification`"}} ml/sklearn -.-> lab-49074{{"`Probability Calibration for 3-Class Classification`"}} end

Data

We generate a classification dataset with 2000 samples, 2 features and 3 target classes. We then split the data as follows:

  • train: 600 samples (for training the classifier)
  • valid: 400 samples (for calibrating predicted probabilities)
  • test: 1000 samples
import numpy as np
from sklearn.datasets import make_blobs

np.random.seed(0)

X, y = make_blobs(
    n_samples=2000, n_features=2, centers=3, random_state=42, cluster_std=5.0
)
X_train, y_train = X[:600], y[:600]
X_valid, y_valid = X[600:1000], y[600:1000]
X_train_valid, y_train_valid = X[:1000], y[:1000]
X_test, y_test = X[1000:], y[1000:]

Fitting and Calibration

We train a random forest classifier with 25 base estimators (trees) on the concatenated train and validation data (1000 samples). This is the uncalibrated classifier.

from sklearn.ensemble import RandomForestClassifier

clf = RandomForestClassifier(n_estimators=25)
clf.fit(X_train_valid, y_train_valid)

To train the calibrated classifier, we start with the same random forest classifier but train it using only the train data subset (600 samples) then calibrate, with method='sigmoid', using the valid data subset (400 samples) in a 2-stage process.

from sklearn.calibration import CalibratedClassifierCV

clf = RandomForestClassifier(n_estimators=25)
clf.fit(X_train, y_train)
cal_clf = CalibratedClassifierCV(clf, method="sigmoid", cv="prefit")
cal_clf.fit(X_valid, y_valid)

Compare Probabilities

We plot a 2-simplex with arrows showing the change in predicted probabilities of the test samples.

import matplotlib.pyplot as plt

plt.figure(figsize=(10, 10))
colors = ["r", "g", "b"]

clf_probs = clf.predict_proba(X_test)
cal_clf_probs = cal_clf.predict_proba(X_test)
## Plot arrows
for i in range(clf_probs.shape[0]):
    plt.arrow(
        clf_probs[i, 0],
        clf_probs[i, 1],
        cal_clf_probs[i, 0] - clf_probs[i, 0],
        cal_clf_probs[i, 1] - clf_probs[i, 1],
        color=colors[y_test[i]],
        head_width=1e-2,
    )

## Plot perfect predictions, at each vertex
plt.plot([1.0], [0.0], "ro", ms=20, label="Class 1")
plt.plot([0.0], [1.0], "go", ms=20, label="Class 2")
plt.plot([0.0], [0.0], "bo", ms=20, label="Class 3")

## Plot boundaries of unit simplex
plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], "k", label="Simplex")

## Annotate points 6 points around the simplex, and mid point inside simplex
plt.annotate(
    r"($\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$)",
    xy=(1.0 / 3, 1.0 / 3),
    xytext=(1.0 / 3, 0.23),
    xycoords="data",
    arrowprops=dict(facecolor="black", shrink=0.05),
    horizontalalignment="center",
    verticalalignment="center",
)
plt.plot([1.0 / 3], [1.0 / 3], "ko", ms=5)
plt.annotate(
    r"($\frac{1}{2}$, $0$, $\frac{1}{2}$)",
    xy=(0.5, 0.0),
    xytext=(0.5, 0.1),
    xycoords="data",
    arrowprops=dict(facecolor="black", shrink=0.05),
    horizontalalignment="center",
    verticalalignment="center",
)
plt.annotate(
    r"($0$, $\frac{1}{2}$, $\frac{1}{2}$)",
    xy=(0.0, 0.5),
    xytext=(0.1, 0.5),
    xycoords="data",
    arrowprops=dict(facecolor="black", shrink=0.05),
    horizontalalignment="center",
    verticalalignment="center",
)
plt.annotate(
    r"($\frac{1}{2}$, $\frac{1}{2}$, $0$)",
    xy=(0.5, 0.5),
    xytext=(0.6, 0.6),
    xycoords="data",
    arrowprops=dict(facecolor="black", shrink=0.05),
    horizontalalignment="center",
    verticalalignment="center",
)
plt.annotate(
    r"($0$, $0$, $1$)",
    xy=(0, 0),
    xytext=(0.1, 0.1),
    xycoords="data",
    arrowprops=dict(facecolor="black", shrink=0.05),
    horizontalalignment="center",
    verticalalignment="center",
)
plt.annotate(
    r"($1$, $0$, $0$)",
    xy=(1, 0),
    xytext=(1, 0.1),
    xycoords="data",
    arrowprops=dict(facecolor="black", shrink=0.05),
    horizontalalignment="center",
    verticalalignment="center",
)
plt.annotate(
    r"($0$, $1$, $0$)",
    xy=(0, 1),
    xytext=(0.1, 1),
    xycoords="data",
    arrowprops=dict(facecolor="black", shrink=0.05),
    horizontalalignment="center",
    verticalalignment="center",
)
## Add grid
plt.grid(False)
for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]:
    plt.plot([0, x], [x, 0], "k", alpha=0.2)
    plt.plot([0, 0 + (1 - x) / 2], [x, x + (1 - x) / 2], "k", alpha=0.2)
    plt.plot([x, x + (1 - x) / 2], [0, 0 + (1 - x) / 2], "k", alpha=0.2)

plt.title("Change of predicted probabilities on test samples after sigmoid calibration")
plt.xlabel("Probability class 1")
plt.ylabel("Probability class 2")
plt.xlim(-0.05, 1.05)
plt.ylim(-0.05, 1.05)
_ = plt.legend(loc="best")

Log-loss Comparison

We compare the log loss of the uncalibrated and calibrated classifiers on the predictions of the 1000 test samples.

from sklearn.metrics import log_loss

score = log_loss(y_test, clf_probs)
cal_score = log_loss(y_test, cal_clf_probs)

print("Log-loss of")
print(f" * uncalibrated classifier: {score:.3f}")
print(f" * calibrated classifier: {cal_score:.3f}")

Generate Grid and Plot

We generate a grid of possible uncalibrated probabilities over the 2-simplex, compute the corresponding calibrated probabilities and plot arrows for each. The arrows are colored according to the highest uncalibrated probability. This illustrates the learned calibration map:

plt.figure(figsize=(10, 10))
## Generate grid of probability values
p1d = np.linspace(0, 1, 20)
p0, p1 = np.meshgrid(p1d, p1d)
p2 = 1 - p0 - p1
p = np.c_[p0.ravel(), p1.ravel(), p2.ravel()]
p = p[p[:, 2] >= 0]

## Use the three class-wise calibrators to compute calibrated probabilities
calibrated_classifier = cal_clf.calibrated_classifiers_[0]
prediction = np.vstack(
    [
        calibrator.predict(this_p)
        for calibrator, this_p in zip(calibrated_classifier.calibrators, p.T)
    ]
).T

## Re-normalize the calibrated predictions to make sure they stay inside the
## simplex. This same renormalization step is performed internally by the
## predict method of CalibratedClassifierCV on multiclass problems.
prediction /= prediction.sum(axis=1)[:, None]

## Plot changes in predicted probabilities induced by the calibrators
for i in range(prediction.shape[0]):
    plt.arrow(
        p[i, 0],
        p[i, 1],
        prediction[i, 0] - p[i, 0],
        prediction[i, 1] - p[i, 1],
        head_width=1e-2,
        color=colors[np.argmax(p[i])],
    )

## Plot the boundaries of the unit simplex
plt.plot([0.0, 1.0, 0.0, 0.0], [0.0, 0.0, 1.0, 0.0], "k", label="Simplex")

plt.grid(False)
for x in [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]:
    plt.plot([0, x], [x, 0], "k", alpha=0.2)
    plt.plot([0, 0 + (1 - x) / 2], [x, x + (1 - x) / 2], "k", alpha=0.2)
    plt.plot([x, x + (1 - x) / 2], [0, 0 + (1 - x) / 2], "k", alpha=0.2)

plt.title("Learned sigmoid calibration map")
plt.xlabel("Probability class 1")
plt.ylabel("Probability class 2")
plt.xlim(-0.05, 1.05)
plt.ylim(-0.05, 1.05)

plt.show()

Summary

This lab showed how to use sigmoid calibration for 3-class classification in Python using scikit-learn. It demonstrated the impact of calibration on predicted probabilities and how it can be used to improve model performance.

Other Machine Learning Tutorials you may like