Optimization Techniques
Chunking for Efficiency
Improve process pool performance by using chunksize
parameter:
from multiprocessing import Pool
def process_data(data):
## Complex data processing
return processed_data
def optimized_pool_processing(data_list):
with Pool(processes=4) as pool:
## Intelligent chunking reduces overhead
results = pool.map(process_data, data_list, chunksize=100)
return results
Optimization Techniques Comparison
Technique |
Performance Impact |
Complexity |
Chunking |
High |
Low |
Async Processing |
Medium |
Medium |
Shared Memory |
High |
High |
Lazy Evaluation |
Medium |
High |
Advanced Pool Management
Context Manager Pattern
from multiprocessing import Pool
import contextlib
@contextlib.contextmanager
def managed_pool(processes=None):
pool = Pool(processes=processes)
try:
yield pool
finally:
pool.close()
pool.join()
def efficient_task_processing():
with managed_pool() as pool:
results = pool.map(complex_task, large_dataset)
graph TD
A[Input Data] --> B{Data Size}
B -->|Large| C[Chunk Processing]
B -->|Small| D[Direct Processing]
C --> E[Parallel Execution]
D --> E
E --> F[Result Aggregation]
Shared Memory Techniques
Using multiprocessing.Value
and multiprocessing.Array
from multiprocessing import Process, Value, Array
def initialize_shared_memory():
## Shared integer
counter = Value('i', 0)
## Shared array of floats
shared_array = Array('d', [0.0] * 10)
return counter, shared_array
Async Processing with apply_async()
from multiprocessing import Pool
def async_task_processing():
with Pool(processes=4) as pool:
## Non-blocking task submission
results = [
pool.apply_async(heavy_computation, (x,))
for x in range(10)
]
## Collect results
output = [result.get() for result in results]
Profiling and Monitoring
import time
import functools
def performance_monitor(func):
@functools.wraps(func)
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
print(f"Function {func.__name__} took {end_time - start_time} seconds")
return result
return wrapper
LabEx recommends:
- Profile before optimizing
- Use appropriate chunk sizes
- Minimize data transfer between processes
- Consider task granularity
Optimization Considerations
- Minimize inter-process communication
- Use appropriate data structures
- Avoid excessive process creation
- Balance computational complexity
Key Optimization Principles
- Reduce overhead
- Maximize parallel execution
- Efficient memory management
- Intelligent task distribution