Scenario Design Techniques
Introduction to Scenario Design
Scenario design is a critical aspect of creating comprehensive and effective test strategies. It involves systematically developing test cases that cover various aspects of software functionality, performance, and reliability.
Key Design Techniques
1. Boundary Value Analysis
Boundary value analysis focuses on testing the limits of input ranges:
def test_boundary_values(self):
## Testing minimum and maximum input values
def validate_age_input(age):
if age < 0 or age > 120:
raise ValueError("Invalid age range")
return True
## Boundary test cases
test_cases = [
-1, ## Below minimum
0, ## Minimum boundary
1, ## Just above minimum
119, ## Just below maximum
120, ## Maximum boundary
121 ## Above maximum
]
for age in test_cases:
try:
result = validate_age_input(age)
print(f"Age {age}: Valid")
except ValueError as e:
print(f"Age {age}: {e}")
2. Equivalence Partitioning
Divide input domain into equivalent partitions:
graph TD
A[Input Domain] --> B[Valid Partition]
A --> C[Invalid Partition 1]
A --> D[Invalid Partition 2]
Example implementation:
def test_equivalence_partitioning(self):
def process_grade(score):
if score < 0 or score > 100:
raise ValueError("Invalid score")
if score >= 90:
return 'A'
elif score >= 80:
return 'B'
elif score >= 70:
return 'C'
elif score >= 60:
return 'D'
else:
return 'F'
## Equivalence partitions
test_cases = [
## Valid partitions
(95, 'A'), ## High score
(85, 'B'), ## Mid-high score
(75, 'C'), ## Mid score
(65, 'D'), ## Low passing score
(55, 'F'), ## Failing score
## Invalid partitions
(-1, ValueError), ## Below minimum
(101, ValueError) ## Above maximum
]
for score, expected in test_cases:
try:
result = process_grade(score)
assert result == expected
except Exception as e:
assert isinstance(e, expected)
3. Decision Table Testing
Create a comprehensive matrix of conditions and actions:
Condition |
Rule 1 |
Rule 2 |
Rule 3 |
Condition A |
True |
True |
False |
Condition B |
False |
True |
True |
Action X |
Yes |
No |
No |
Action Y |
No |
Yes |
Yes |
4. State Transition Testing
stateDiagram-v2
[*] --> Idle
Idle --> Processing : Start
Processing --> Completed : Success
Processing --> Failed : Error
Completed --> [*]
Failed --> [*]
Python implementation:
class StateMachine:
def __init__(self):
self.state = 'Idle'
def transition(self, event):
if self.state == 'Idle' and event == 'start':
self.state = 'Processing'
elif self.state == 'Processing':
if event == 'success':
self.state = 'Completed'
elif event == 'error':
self.state = 'Failed'
def test_state_transitions(self):
## Test all possible state transitions
test_sequences = [
['start', 'success'],
['start', 'error'],
## Add more test sequences
]
for sequence in test_sequences:
self.state = 'Idle'
for event in sequence:
self.transition(event)
Advanced Scenario Design Strategies
-
Combinatorial Testing
- Generate test cases covering all possible combinations
- Reduces total number of test cases while maintaining coverage
-
Risk-Based Testing
- Prioritize scenarios based on potential impact
- Focus on high-risk areas of the application
LabEx Recommendations
When designing test scenarios, LabEx suggests:
- Use multiple design techniques
- Maintain a balance between comprehensive coverage and test efficiency
- Continuously refine and update test scenarios
By mastering these scenario design techniques, you can create robust and effective test strategies that ensure software quality and reliability.