Functional List Techniques
Advanced List Manipulation
Reduce() Function
from functools import reduce
## Calculate cumulative product
numbers = [1, 2, 3, 4, 5]
product = reduce(lambda x, y: x * y, numbers)
Functional Programming Paradigms
Functional Composition
def square(x):
return x ** 2
def double(x):
return x * 2
## Function composition
def compose(f, g):
return lambda x: f(g(x))
transform = compose(square, double)
result = [transform(x) for x in numbers]
graph TD
A[Original List] --> B{Functional Techniques}
B --> C[Reduce]
B --> D[Partial Functions]
B --> E[Function Composition]
Partial Functions
from functools import partial
def multiply(x, y):
return x * y
double = partial(multiply, 2)
doubled_list = list(map(double, numbers))
Comparison of Functional Techniques
Technique |
Use Case |
Complexity |
Performance |
map() |
Transformation |
Low |
High |
reduce() |
Aggregation |
Moderate |
Moderate |
Partial Functions |
Specialization |
Low |
High |
Advanced Functional Patterns
Currying
def curry(f):
def curried(*args):
if len(args) >= f.__code__.co_argcount:
return f(*args)
return lambda x: curried(*args, x)
return curried
@curry
def add(x, y):
return x + y
LabEx Pro Tip
Leverage functional techniques to write more concise and readable code, focusing on transformations rather than explicit loops.
Best Practices
- Use functional techniques for clear, declarative code
- Prefer immutable transformations
- Understand performance implications of different approaches