Parallel Programming
Understanding Parallel Programming in Go
Parallel programming involves executing multiple tasks simultaneously on different CPU cores, maximizing computational efficiency and performance.
Parallel Execution Strategies
CPU-Bound Task Parallelization
func processData(data []int, resultChan chan int) {
sum := 0
for _, value := range data {
sum += heavyComputation(value)
}
resultChan <- sum
}
func parallelComputation(dataset []int) int {
numCPU := runtime.NumCPU()
runtime.GOMAXPROCS(numCPU)
resultChan := make(chan int, numCPU)
chunkSize := len(dataset) / numCPU
for i := 0; i < numCPU; i++ {
start := i * chunkSize
end := (i + 1) * chunkSize
go processData(dataset[start:end], resultChan)
}
totalResult := 0
for i := 0; i < numCPU; i++ {
totalResult += <-resultChan
}
return totalResult
}
Parallel Processing Flow
graph TD
A[Input Data] --> B[Divide Data]
B --> C[Parallel Goroutines]
C --> D[Collect Results]
D --> E[Final Output]
Parallel Processing Patterns
Pattern |
Description |
Use Case |
Data Parallelism |
Distribute data across multiple goroutines |
Large dataset processing |
Task Parallelism |
Execute different tasks concurrently |
Complex computational workflows |
Pipeline Processing |
Process data through sequential stages |
ETL operations |
Synchronization Techniques
Atomic Operations
var counter int64
func incrementCounter() {
atomic.AddInt64(&counter, 1)
}
Mutex-Based Synchronization
var (
mu sync.Mutex
sharedResource = make(map[string]int)
)
func updateResource(key string, value int) {
mu.Lock()
defer mu.Unlock()
sharedResource[key] = value
}
- Use
runtime.GOMAXPROCS()
to control parallel execution
- Minimize lock contention
- Prefer channels over shared memory
- Use buffered channels for high-performance scenarios
Parallel Computing Considerations
- Overhead of goroutine creation
- Communication between goroutines
- Memory allocation and garbage collection
Advanced Parallel Techniques
Worker Pool Pattern
func workerPool(jobs <-chan int, results chan<- int, numWorkers int) {
var wg sync.WaitGroup
for i := 0; i < numWorkers; i++ {
wg.Add(1)
go func() {
defer wg.Done()
for job := range jobs {
result := processJob(job)
results <- result
}
}()
}
wg.Wait()
close(results)
}
LabEx Insight
At LabEx, we emphasize practical parallel programming skills, focusing on efficient goroutine management and performance optimization techniques.