Нормализация цветовых карточек Matplotlib

PythonPythonBeginner
Практиковаться сейчас

This tutorial is from open-source community. Access the source code

💡 Этот учебник переведен с английского с помощью ИИ. Чтобы просмотреть оригинал, вы можете перейти на английский оригинал

Введение

В этом практическом занятии мы научимся использовать Matplotlib для отображения цветовых карты на данные нелинейным способом. Мы покажем, как использовать norm для создания логарифмических, степенных, симметричных логарифмических и пользовательских нормализаций. Также мы научимся использовать BoundaryNorm для задания границ для цветов.

Советы по работе с ВМ

После запуска ВМ нажмите в левом верхнем углу, чтобы переключиться на вкладку Ноутбук и получить доступ к Jupyter Notebook для практики.

Иногда вам может потребоваться подождать несколько секунд, пока Jupyter Notebook загрузится. Валидация операций не может быть автоматизирована из-за ограничений Jupyter Notebook.

Если вы столкнетесь с проблемами во время обучения, не стесняйтесь обращаться к Labby. Оставьте отзыв после занятия, и мы оперативно решим проблему для вас.

Lognorm

Мы создадим низкий горб с острым пиком сверху, для которого ось z/цвет должна быть в логарифмическом масштабе, чтобы мы увидели как горб, так и пик.

N = 100
X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)]

Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X * 10)**2 - (Y * 10)**2)
Z = Z1 + 50 * Z2

fig, ax = plt.subplots(2, 1)

pcm = ax[0].pcolor(X, Y, Z,
                   norm=colors.LogNorm(vmin=Z.min(), vmax=Z.max()),
                   cmap='PuBu_r', shading='nearest')
fig.colorbar(pcm, ax=ax[0], extend='max')

pcm = ax[1].pcolor(X, Y, Z, cmap='PuBu_r', shading='nearest')
fig.colorbar(pcm, ax=ax[1], extend='max')

PowerNorm

Мы создадим степенное распределение в X, которое частично скрывает整流ированную синусоидальную волну в Y. Затем мы удалим степенное распределение с использованием PowerNorm.

X, Y = np.mgrid[0:3:complex(0, N), 0:2:complex(0, N)]
Z1 = (1 + np.sin(Y * 10.)) * X**2

fig, ax = plt.subplots(2, 1)

pcm = ax[0].pcolormesh(X, Y, Z1, norm=colors.PowerNorm(gamma=1. / 2.),
                       cmap='PuBu_r', shading='nearest')
fig.colorbar(pcm, ax=ax[0], extend='max')

pcm = ax[1].pcolormesh(X, Y, Z1, cmap='PuBu_r', shading='nearest')
fig.colorbar(pcm, ax=ax[1], extend='max')

SymLogNorm

Мы создадим два горба, один отрицательный и один положительный, при этом амплитуда положительного горба в 5 раз больше. Линейно мы не сможем увидеть детали в отрицательном горбе. Мы отдельно применим логарифмический масштаб к положительным и отрицательным данным с использованием SymLogNorm.

X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)]
Z = 5 * np.exp(-X**2 - Y**2)

fig, ax = plt.subplots(2, 1)

pcm = ax[0].pcolormesh(X, Y, Z,
                       norm=colors.SymLogNorm(linthresh=0.03, linscale=0.03,
                                              vmin=-1.0, vmax=1.0, base=10),
                       cmap='RdBu_r', shading='nearest')
fig.colorbar(pcm, ax=ax[0], extend='both')

pcm = ax[1].pcolormesh(X, Y, Z, cmap='RdBu_r', vmin=-np.max(Z),
                       shading='nearest')
fig.colorbar(pcm, ax=ax[1], extend='both')

Custom Norm

Мы создадим пример с пользовательской нормализацией. Этот пример использует предыдущий пример и нормализует отрицательные данные по-разному от положительных.

X, Y = np.mgrid[-3:3:complex(0, N), -2:2:complex(0, N)]
Z1 = np.exp(-X**2 - Y**2)
Z2 = np.exp(-(X - 1)**2 - (Y - 1)**2)
Z = (Z1 - Z2) * 2

class MidpointNormalize(colors.Normalize):
    def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False):
        self.midpoint = midpoint
        super().__init__(vmin, vmax, clip)

    def __call__(self, value, clip=None):
        x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1]
        return np.ma.masked_array(np.interp(value, x, y))

fig, ax = plt.subplots(2, 1)

pcm = ax[0].pcolormesh(X, Y, Z,
                       norm=MidpointNormalize(midpoint=0.),
                       cmap='RdBu_r', shading='nearest')
fig.colorbar(pcm, ax=ax[0], extend='both')

pcm = ax[1].pcolormesh(X, Y, Z, cmap='RdBu_r', vmin=-np.max(Z),
                       shading='nearest')
fig.colorbar(pcm, ax=ax[1], extend='both')

BoundaryNorm

Мы предоставим границы для цветов с использованием BoundaryNorm.

fig, ax = plt.subplots(3, 1, figsize=(8, 8))
ax = ax.flatten()
bounds = np.linspace(-1, 1, 10)
norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256)
pcm = ax[0].pcolormesh(X, Y, Z,
                       norm=norm,
                       cmap='RdBu_r', shading='nearest')
fig.colorbar(pcm, ax=ax[0], extend='both', orientation='vertical')

bounds = np.array([-0.25, -0.125, 0, 0.5, 1])
norm = colors.BoundaryNorm(boundaries=bounds, ncolors=256)
pcm = ax[1].pcolormesh(X, Y, Z, norm=norm, cmap='RdBu_r', shading='nearest')
fig.colorbar(pcm, ax=ax[1], extend='both', orientation='vertical')

pcm = ax[2].pcolormesh(X, Y, Z, cmap='RdBu_r', vmin=-np.max(Z1),
                       shading='nearest')
fig.colorbar(pcm, ax=ax[2], extend='both', orientation='vertical')

plt.show()

Summary

В этом практическом занятии мы узнали, как использовать Matplotlib для отображения цветовых карточек на данные нелинейным способом с использованием различных нормализаций, таких как LogNorm, PowerNorm, SymLogNorm и пользовательские нормализации. Мы также узнали, как использовать BoundaryNorm для предоставления границ для цветов.