Introduction
Ce laboratoire vous guide à travers diverses techniques pour accélérer les opérations sur un DataFrame pandas à l'aide de Cython, Numba et pandas.eval(). Ces techniques peuvent apporter des améliorations significatives de vitesse lors du travail avec de grands ensembles de données.
Conseils sur la machine virtuelle
Une fois le démarrage de la machine virtuelle terminé, cliquez dans le coin supérieur gauche pour basculer vers l'onglet Notebook pour accéder au Notebook Jupyter pour pratiquer.
Parfois, vous devrez peut-être attendre quelques secondes pour que le Notebook Jupyter ait fini de charger. La validation des opérations ne peut pas être automatisée en raison des limitations du Notebook Jupyter.
Si vous rencontrez des problèmes pendant l'apprentissage, n'hésitez pas à demander à Labby. Donnez votre feedback après la session, et nous résoudrons rapidement le problème pour vous.