Modèles d'utilisation avancés
Stratégies d'unpacking (désembalage) complexes
Unpacking récursif
def deep_unpack(nested_list):
def unpack(items):
for item in items:
if isinstance(item, list):
yield from unpack(item)
else:
yield item
return list(unpack(nested_list))
complex_list = [1, [2, 3], [4, [5, 6]]]
result = deep_unpack(complex_list)
print(result) ## Output: [1, 2, 3, 4, 5, 6]
Conversion de type dynamique
def flexible_converter(*args, convert_to=list):
return convert_to(args)
numbers = flexible_converter(1, 2, 3, 4)
string_set = flexible_converter('a', 'b', 'c', convert_to=set)
Techniques de programmation fonctionnelle
Application partielle de fonction
from functools import partial
def multiply(x, y):
return x * y
double = partial(multiply, 2)
print(double(5)) ## Output: 10
Modèles d'unpacking avancés
graph TD
A[Advanced Unpacking] --> B[Recursive Methods]
A --> C[Type Conversion]
A --> D[Functional Techniques]
A --> E[Dynamic Unpacking]
Technique |
Efficacité mémoire |
Complexité |
Unpacking avec générateur |
Haute |
Moyenne |
Évaluation paresseuse |
Excellente |
Haute |
Compréhension |
Bonne |
Basse |
Unpacking résistant aux erreurs
def safe_unpack(iterable, default=None):
try:
return next(iter(iterable))
except StopIteration:
return default
result = safe_unpack([]) ## Returns None
result = safe_unpack([1, 2, 3]) ## Returns 1
Métaprogrammation avec unpacking
class DynamicUnpacker:
def __init__(self, *args, **kwargs):
self.args = args
self.kwargs = kwargs
def process(self):
return {
'positional': self.args,
'keyword': self.kwargs
}
unpacker = DynamicUnpacker(1, 2, 3, name='LabEx', version='1.0')
print(unpacker.process())
Techniques avancées de décorateur
def debug_unpack(func):
def wrapper(*args, **kwargs):
print(f"Args: {args}")
print(f"Kwargs: {kwargs}")
return func(*args, **kwargs)
return wrapper
@debug_unpack
def example_function(x, y, *args, **kwargs):
return x + y
example_function(1, 2, 3, 4, name='test')
Points clés
- Exploitez l'unpacking pour des transformations de données complexes
- Utilisez les générateurs pour un traitement économisant la mémoire
- Mettez en œuvre des stratégies d'unpacking résistantes aux erreurs
- Explorez les techniques de programmation fonctionnelle
En maîtrisant ces modèles d'utilisation avancés, vous débloquerez des capacités de programmation Python puissantes et écrirez un code plus sophistiqué.