Courbes d'étalonnage de probabilité

Machine LearningMachine LearningBeginner
Pratiquer maintenant

This tutorial is from open-source community. Access the source code

💡 Ce tutoriel est traduit par l'IA à partir de la version anglaise. Pour voir la version originale, vous pouvez cliquer ici

Introduction

Dans ce laboratoire, nous allons apprendre à utiliser les courbes d'étalonnage pour évaluer les probabilités prédites d'un modèle de classification. Nous utiliserons scikit-learn pour effectuer la classification et visualiser les résultats.

Conseils sur la machine virtuelle

Une fois le démarrage de la machine virtuelle terminé, cliquez dans le coin supérieur gauche pour basculer vers l'onglet Carnet de notes pour accéder au carnet Jupyter pour pratiquer.

Parfois, vous devrez peut-être attendre quelques secondes pour que le carnet Jupyter ait fini de charger. La validation des opérations ne peut pas être automatisée en raison des limitations du carnet Jupyter.

Si vous rencontrez des problèmes pendant l'apprentissage, n'hésitez pas à demander à Labby. Donnez votre feedback après la session, et nous réglerons rapidement le problème pour vous.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL sklearn(("Sklearn")) -.-> sklearn/CoreModelsandAlgorithmsGroup(["Core Models and Algorithms"]) sklearn(("Sklearn")) -.-> sklearn/ModelSelectionandEvaluationGroup(["Model Selection and Evaluation"]) sklearn(("Sklearn")) -.-> sklearn/UtilitiesandDatasetsGroup(["Utilities and Datasets"]) ml(("Machine Learning")) -.-> ml/FrameworkandSoftwareGroup(["Framework and Software"]) sklearn/CoreModelsandAlgorithmsGroup -.-> sklearn/linear_model("Linear Models") sklearn/CoreModelsandAlgorithmsGroup -.-> sklearn/naive_bayes("Naive Bayes") sklearn/CoreModelsandAlgorithmsGroup -.-> sklearn/svm("Support Vector Machines") sklearn/ModelSelectionandEvaluationGroup -.-> sklearn/model_selection("Model Selection") sklearn/ModelSelectionandEvaluationGroup -.-> sklearn/metrics("Metrics") sklearn/ModelSelectionandEvaluationGroup -.-> sklearn/calibration("Probability Calibration") sklearn/UtilitiesandDatasetsGroup -.-> sklearn/datasets("Datasets") ml/FrameworkandSoftwareGroup -.-> ml/sklearn("scikit-learn") subgraph Lab Skills sklearn/linear_model -.-> lab-49073{{"Courbes d'étalonnage de probabilité"}} sklearn/naive_bayes -.-> lab-49073{{"Courbes d'étalonnage de probabilité"}} sklearn/svm -.-> lab-49073{{"Courbes d'étalonnage de probabilité"}} sklearn/model_selection -.-> lab-49073{{"Courbes d'étalonnage de probabilité"}} sklearn/metrics -.-> lab-49073{{"Courbes d'étalonnage de probabilité"}} sklearn/calibration -.-> lab-49073{{"Courbes d'étalonnage de probabilité"}} sklearn/datasets -.-> lab-49073{{"Courbes d'étalonnage de probabilité"}} ml/sklearn -.-> lab-49073{{"Courbes d'étalonnage de probabilité"}} end

Ensemble de données

Nous utiliserons un ensemble de données de classification binaire synthétique avec 100 000 échantillons et 20 caractéristiques. Parmi les 20 caractéristiques, seulement 2 sont informatives, 10 sont redondantes (combinaisons aléatoires des caractéristiques informatives) et les 8 restantes sont non informatives (nombres aléatoires). Sur les 100 000 échantillons, 1 000 seront utilisés pour l'ajustement du modèle et le reste pour les tests.

from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split

X, y = make_classification(
    n_samples=100_000, n_features=20, n_informative=2, n_redundant=10, random_state=42
)

X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.99, random_state=42
)

Courbes d'étalonnage

Nous allons comparer plusieurs classifieurs avec des courbes d'étalonnage. Tout d'abord, nous allons comparer :

  • La Régression logistique (utilisée comme référence de base)
  • Le Bayes Naïf non étalonné
  • Le Bayes Naïf Gaussien avec étalonnage isotone et sigmoïde
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec

from sklearn.calibration import CalibratedClassifierCV, CalibrationDisplay
from sklearn.linear_model import LogisticRegression
from sklearn.naive_bayes import GaussianNB

lr = LogisticRegression(C=1.0)
gnb = GaussianNB()
gnb_isotonic = CalibratedClassifierCV(gnb, cv=2, method="isotonic")
gnb_sigmoid = CalibratedClassifierCV(gnb, cv=2, method="sigmoid")

clf_list = [
    (lr, "Logistic"),
    (gnb, "Naive Bayes"),
    (gnb_isotonic, "Naive Bayes + Isotonic"),
    (gnb_sigmoid, "Naive Bayes + Sigmoid"),
]

fig = plt.figure(figsize=(10, 10))
gs = GridSpec(4, 2)
colors = plt.get_cmap("Dark2")

ax_calibration_curve = fig.add_subplot(gs[:2, :2])
calibration_displays = {}
for i, (clf, name) in enumerate(clf_list):
    clf.fit(X_train, y_train)
    display = CalibrationDisplay.from_estimator(
        clf,
        X_test,
        y_test,
        n_bins=10,
        name=name,
        ax=ax_calibration_curve,
        color=colors(i),
    )
    calibration_displays[name] = display

ax_calibration_curve.grid()
ax_calibration_curve.set_title("Calibration plots (Naive Bayes)")

## Add histogram
grid_positions = [(2, 0), (2, 1), (3, 0), (3, 1)]
for i, (_, name) in enumerate(clf_list):
    row, col = grid_positions[i]
    ax = fig.add_subplot(gs[row, col])

    ax.hist(
        calibration_displays[name].y_prob,
        range=(0, 1),
        bins=10,
        label=name,
        color=colors(i),
    )
    ax.set(title=name, xlabel="Mean predicted probability", ylabel="Count")

plt.tight_layout()
plt.show()

Classifieur à vecteurs de support linéaire

Ensuite, nous allons comparer :

  • La Régression logistique (référence de base)
  • Le Classifieur à vecteurs de support linéaire (SVC) non étalonné
  • Le SVC linéaire avec étalonnage isotone et sigmoïde
import numpy as np

from sklearn.svm import LinearSVC


class NaivelyCalibratedLinearSVC(LinearSVC):
    """LinearSVC avec méthode `predict_proba` qui met à l'échelle de manière naïve
    la sortie de `decision_function` pour la classification binaire."""

    def fit(self, X, y):
        super().fit(X, y)
        df = self.decision_function(X)
        self.df_min_ = df.min()
        self.df_max_ = df.max()

    def predict_proba(self, X):
        """Mettre à l'échelle min-max la sortie de `decision_function` à [0, 1]."""
        df = self.decision_function(X)
        calibrated_df = (df - self.df_min_) / (self.df_max_ - self.df_min_)
        proba_pos_class = np.clip(calibrated_df, 0, 1)
        proba_neg_class = 1 - proba_pos_class
        proba = np.c_[proba_neg_class, proba_pos_class]
        return proba

lr = LogisticRegression(C=1.0)
svc = NaivelyCalibratedLinearSVC(max_iter=10_000, dual="auto")
svc_isotonic = CalibratedClassifierCV(svc, cv=2, method="isotonic")
svc_sigmoid = CalibratedClassifierCV(svc, cv=2, method="sigmoid")

clf_list = [
    (lr, "Logistic"),
    (svc, "SVC"),
    (svc_isotonic, "SVC + Isotonic"),
    (svc_sigmoid, "SVC + Sigmoid"),
]

fig = plt.figure(figsize=(10, 10))
gs = GridSpec(4, 2)

ax_calibration_curve = fig.add_subplot(gs[:2, :2])
calibration_displays = {}
for i, (clf, name) in enumerate(clf_list):
    clf.fit(X_train, y_train)
    display = CalibrationDisplay.from_estimator(
        clf,
        X_test,
        y_test,
        n_bins=10,
        name=name,
        ax=ax_calibration_curve,
        color=colors(i),
    )
    calibration_displays[name] = display

ax_calibration_curve.grid()
ax_calibration_curve.set_title("Calibration plots (SVC)")

## Add histogram
grid_positions = [(2, 0), (2, 1), (3, 0), (3, 1)]
for i, (_, name) in enumerate(clf_list):
    row, col = grid_positions[i]
    ax = fig.add_subplot(gs[row, col])

    ax.hist(
        calibration_displays[name].y_prob,
        range=(0, 1),
        bins=10,
        label=name,
        color=colors(i),
    )
    ax.set(title=name, xlabel="Mean predicted probability", ylabel="Count")

plt.tight_layout()
plt.show()

Evaluation

Nous évaluerons les classifieurs avec plusieurs métriques de classification : brier_score_loss, log_loss, précision, rappel, score F1 et ROC AUC.

from collections import defaultdict

import pandas as pd

from sklearn.metrics import (
    precision_score,
    recall_score,
    f1_score,
    brier_score_loss,
    log_loss,
    roc_auc_score,
)

scores = defaultdict(list)
for i, (clf, name) in enumerate(clf_list):
    clf.fit(X_train, y_train)
    y_prob = clf.predict_proba(X_test)
    y_pred = clf.predict(X_test)
    scores["Classifier"].append(name)

    for metric in [brier_score_loss, log_loss, roc_auc_score]:
        score_name = metric.__name__.replace("_", " ").replace("score", "").capitalize()
        scores[score_name].append(metric(y_test, y_prob[:, 1]))

    for metric in [precision_score, recall_score, f1_score]:
        score_name = metric.__name__.replace("_", " ").replace("score", "").capitalize()
        scores[score_name].append(metric(y_test, y_pred))

    score_df = pd.DataFrame(scores).set_index("Classifier")
    score_df.round(decimals=3)

Sommaire

Nous avons appris à utiliser les courbes d'étalonnage pour évaluer les probabilités prédites d'un modèle de classification. Nous avons comparé plusieurs classifieurs avec des courbes d'étalonnage et les avons évalués avec plusieurs métriques de classification. Nous avons également appris que l'étalonnage sigmoïde paramétrique peut traiter les situations où la courbe d'étalonnage du classifieur de base est sigmoïde, mais pas celles où elle est transposée-sigmoïde. L'étalonnage isotone non paramétrique peut traiter les deux situations, mais peut nécessiter plus de données pour produire de bons résultats.