Appliquer la NMF
Nous allons appliquer la NMF avec deux fonctions objectifs différentes : la norme de Frobenius et la divergence générale de Kullback-Leibler. Cette dernière est équivalente à l'indexation sémantique latente probabiliste.
from sklearn.decomposition import NMF
n_components = 10
n_top_words = 20
init = "nndsvda"
## Ajuster le modèle NMF
print(
"Ajustement du modèle NMF (norme de Frobenius) avec des caractéristiques tf-idf, "
"n_samples=%d et n_features=%d..." % (n_samples, n_features)
)
nmf = NMF(
n_components=n_components,
random_state=1,
init=init,
beta_loss="frobenius",
alpha_W=0.00005,
alpha_H=0.00005,
l1_ratio=1,
).fit(tfidf)
## Tracer les mots les plus fréquents pour le modèle NMF
def plot_top_words(model, feature_names, n_top_words, title):
fig, axes = plt.subplots(2, 5, figsize=(30, 15), sharex=True)
axes = axes.flatten()
for topic_idx, topic in enumerate(model.components_):
top_features_ind = topic.argsort()[: -n_top_words - 1 : -1]
top_features = [feature_names[i] for i in top_features_ind]
weights = topic[top_features_ind]
ax = axes[topic_idx]
ax.barh(top_features, weights, height=0.7)
ax.set_title(f"Sujet {topic_idx +1}", fontdict={"fontsize": 30})
ax.invert_yaxis()
ax.tick_params(axis="both", which="major", labelsize=20)
for i in "top right left".split():
ax.spines[i].set_visible(False)
fig.suptitle(title, fontsize=40)
plt.subplots_adjust(top=0.90, bottom=0.05, wspace=0.90, hspace=0.3)
plt.show()
tfidf_feature_names = tfidf_vectorizer.get_feature_names_out()
plot_top_words(
nmf, tfidf_feature_names, n_top_words, "Sujets dans le modèle NMF (norme de Frobenius)"
)
## Ajuster le modèle NMF avec la divergence générale de Kullback-Leibler
print(
"\n" * 2,
"Ajustement du modèle NMF (divergence générale de Kullback-Leibler "
"divergence) avec des caractéristiques tf-idf, n_samples=%d et n_features=%d..."
% (n_samples, n_features),
)
nmf = NMF(
n_components=n_components,
random_state=1,
init=init,
beta_loss="kullback-leibler",
solver="mu",
max_iter=1000,
alpha_W=0.00005,
alpha_H=0.00005,
l1_ratio=0.5,
).fit(tfidf)
## Tracer les mots les plus fréquents pour le modèle NMF avec la divergence générale de Kullback-Leibler
tfidf_feature_names = tfidf_vectorizer.get_feature_names_out()
plot_top_words(
nmf,
tfidf_feature_names,
n_top_words,
"Sujets dans le modèle NMF (divergence générale de Kullback-Leibler divergence)",
)
## Ajuster le modèle MiniBatchNMF
from sklearn.decomposition import MiniBatchNMF
batch_size = 128
print(
"\n" * 2,
"Ajustement du modèle MiniBatchNMF (norme de Frobenius) avec tf-idf "
"caractéristiques, n_samples=%d et n_features=%d, batch_size=%d..."
% (n_samples, n_features, batch_size),
)
mbnmf = MiniBatchNMF(
n_components=n_components,
random_state=1,
batch_size=batch_size,
init=init,
beta_loss="frobenius",
alpha_W=0.00005,
alpha_H=0.00005,
l1_ratio=0.5,
).fit(tfidf)
## Tracer les mots les plus fréquents pour le modèle MiniBatchNMF avec la norme de Frobenius
tfidf_feature_names = tfidf_vectorizer.get_feature_names_out()
plot_top_words(
mbnmf,
tfidf_feature_names,
n_top_words,
"Sujets dans le modèle MiniBatchNMF (norme de Frobenius)",
)
## Ajuster le modèle MiniBatchNMF avec la divergence générale de Kullback-Leibler
print(
"\n" * 2,
"Ajustement du modèle MiniBatchNMF (divergence générale de Kullback-Leibler "
"divergence) avec des caractéristiques tf-idf, n_samples=%d et n_features=%d, "
"batch_size=%d..." % (n_samples, n_features, batch_size),
)
mbnmf = MiniBatchNMF(
n_components=n_components,
random_state=1,
batch_size=batch_size,
init=init,
beta_loss="kullback-leibler",
alpha_W=0.00005,
alpha_H=0.00005,
l1_ratio=0.5,
).fit(tfidf)
## Tracer les mots les plus fréquents pour le modèle MiniBatchNMF avec la divergence générale de Kullback-Leibler
tfidf_feature_names = tfidf_vectorizer.get_feature_names_out()
plot_top_words(
mbnmf,
tfidf_feature_names,
n_top_words,
"Sujets dans le modèle MiniBatchNMF (divergence générale de Kullback-Leibler divergence)",
)