Crear y trazar mallas triangulares

PythonPythonBeginner
Practicar Ahora

This tutorial is from open-source community. Access the source code

💡 Este tutorial está traducido por IA desde la versión en inglés. Para ver la versión original, puedes hacer clic aquí

Introducción

En este laboratorio, aprenderemos a crear y trazar mallas triangulares no estructuradas en Python utilizando la librería Matplotlib. Comenzaremos creando una triangulación de Delaunay de un conjunto de puntos y luego trazaremos la triangulación. A continuación, especificaremos nuestra propia triangulación proporcionando los índices de los tres puntos que forman cada triángulo. Finalmente, trazaremos la triangulación especificada por el usuario.

Consejos sobre la VM

Una vez finalizada la inicialización de la VM, haga clic en la esquina superior izquierda para cambiar a la pestaña Cuaderno y acceder a Jupyter Notebook para practicar.

A veces, es posible que tenga que esperar unos segundos a que Jupyter Notebook termine de cargarse. La validación de las operaciones no se puede automatizar debido a las limitaciones de Jupyter Notebook.

Si tiene problemas durante el aprendizaje, no dude en preguntar a Labby. Deje sus comentarios después de la sesión y lo resolveremos rápidamente para usted.


Skills Graph

%%%%{init: {'theme':'neutral'}}%%%% flowchart RL matplotlib(("Matplotlib")) -.-> matplotlib/BasicConceptsGroup(["Basic Concepts"]) python(("Python")) -.-> python/BasicConceptsGroup(["Basic Concepts"]) python(("Python")) -.-> python/DataStructuresGroup(["Data Structures"]) python(("Python")) -.-> python/ModulesandPackagesGroup(["Modules and Packages"]) python(("Python")) -.-> python/DataScienceandMachineLearningGroup(["Data Science and Machine Learning"]) matplotlib/BasicConceptsGroup -.-> matplotlib/importing_matplotlib("Importing Matplotlib") matplotlib/BasicConceptsGroup -.-> matplotlib/figures_axes("Understanding Figures and Axes") python/BasicConceptsGroup -.-> python/booleans("Booleans") python/DataStructuresGroup -.-> python/lists("Lists") python/DataStructuresGroup -.-> python/tuples("Tuples") python/ModulesandPackagesGroup -.-> python/importing_modules("Importing Modules") python/DataScienceandMachineLearningGroup -.-> python/numerical_computing("Numerical Computing") python/DataScienceandMachineLearningGroup -.-> python/data_visualization("Data Visualization") subgraph Lab Skills matplotlib/importing_matplotlib -.-> lab-49011{{"Crear y trazar mallas triangulares"}} matplotlib/figures_axes -.-> lab-49011{{"Crear y trazar mallas triangulares"}} python/booleans -.-> lab-49011{{"Crear y trazar mallas triangulares"}} python/lists -.-> lab-49011{{"Crear y trazar mallas triangulares"}} python/tuples -.-> lab-49011{{"Crear y trazar mallas triangulares"}} python/importing_modules -.-> lab-49011{{"Crear y trazar mallas triangulares"}} python/numerical_computing -.-> lab-49011{{"Crear y trazar mallas triangulares"}} python/data_visualization -.-> lab-49011{{"Crear y trazar mallas triangulares"}} end

Importar bibliotecas

Comenzaremos importando las bibliotecas necesarias: Matplotlib, NumPy y Matplotlib.tri.

import matplotlib.pyplot as plt
import numpy as np
import matplotlib.tri as tri

Crear triangulación de Delaunay

Crearemos una triangulación de Delaunay sin especificar los triángulos proporcionando las coordenadas x e y de los puntos.

n_angles = 36
n_radii = 8
min_radius = 0.25
radii = np.linspace(min_radius, 0.95, n_radii)
angles = np.linspace(0, 2 * np.pi, n_angles, endpoint=False)
angles = np.repeat(angles[..., np.newaxis], n_radii, axis=1)
angles[:, 1::2] += np.pi / n_angles
x = (radii * np.cos(angles)).flatten()
y = (radii * np.sin(angles)).flatten()
triang = tri.Triangulation(x, y)

Ocultar triángulos no deseados

Ocultaremos los triángulos no deseados calculando la media de las coordenadas x e y de los vértices de cada triángulo y comparándola con el radio mínimo.

triang.set_mask(np.hypot(x[triang.triangles].mean(axis=1),
                         y[triang.triangles].mean(axis=1))
                < min_radius)

Trazar la triangulación de Delaunay

Vamos a trazar la triangulación utilizando la función triplot.

fig1, ax1 = plt.subplots()
ax1.set_aspect('equal')
ax1.triplot(triang, 'bo-', lw=1)
ax1.set_title('Triplot of Delaunay Triangulation')

Crear una triangulación especificada por el usuario

Vamos a crear una triangulación especificada por el usuario proporcionando las coordenadas x e y de los vértices de cada triángulo.

xy = np.asarray([
    [-0.101, 0.872], [-0.080, 0.883], [-0.069, 0.888], [-0.054, 0.890],
    [-0.045, 0.897], [-0.057, 0.895], [-0.073, 0.900], [-0.087, 0.898],
    [-0.090, 0.904], [-0.069, 0.907], [-0.069, 0.921], [-0.080, 0.919],
    [-0.073, 0.928], [-0.052, 0.930], [-0.048, 0.942], [-0.062, 0.949],
    [-0.054, 0.958], [-0.069, 0.954], [-0.087, 0.952], [-0.087, 0.959],
    [-0.080, 0.966], [-0.085, 0.973], [-0.087, 0.965], [-0.097, 0.965],
    [-0.097, 0.975], [-0.092, 0.984], [-0.101, 0.980], [-0.108, 0.980],
    [-0.104, 0.987], [-0.102, 0.993], [-0.115, 1.001], [-0.099, 0.996],
    [-0.101, 1.007], [-0.090, 1.010], [-0.087, 1.021], [-0.069, 1.021],
    [-0.052, 1.022], [-0.052, 1.017], [-0.069, 1.010], [-0.064, 1.005],
    [-0.048, 1.005], [-0.031, 1.005], [-0.031, 0.996], [-0.040, 0.987],
    [-0.045, 0.980], [-0.052, 0.975], [-0.040, 0.973], [-0.026, 0.968],
    [-0.020, 0.954], [-0.006, 0.947], [ 0.003, 0.935], [ 0.006, 0.926],
    [ 0.005, 0.921], [ 0.022, 0.923], [ 0.033, 0.912], [ 0.029, 0.905],
    [ 0.017, 0.900], [ 0.012, 0.895], [ 0.027, 0.893], [ 0.019, 0.886],
    [ 0.001, 0.883], [-0.012, 0.884], [-0.029, 0.883], [-0.038, 0.879],
    [-0.057, 0.881], [-0.062, 0.876], [-0.078, 0.876], [-0.087, 0.872],
    [-0.030, 0.907], [-0.007, 0.905], [-0.057, 0.916], [-0.025, 0.933],
    [-0.077, 0.990], [-0.059, 0.993]])
x = np.degrees(xy[:, 0])
y = np.degrees(xy[:, 1])
triangles = np.asarray([
    [67, 66,  1], [65,  2, 66], [ 1, 66,  2], [64,  2, 65], [63,  3, 64],
    [60, 59, 57], [ 2, 64,  3], [ 3, 63,  4], [ 0, 67,  1], [62,  4, 63],
    [57, 59, 56], [59, 58, 56], [61, 60, 69], [57, 69, 60], [ 4, 62, 68],
    [ 6,  5,  9], [61, 68, 62], [69, 68, 61], [ 9,  5, 70], [ 6,  8,  7],
    [ 4, 70,  5], [ 8,  6,  9], [56, 69, 57], [69, 56, 52], [70, 10,  9],
    [54, 53, 55], [56, 55, 53], [68, 70,  4], [52, 56, 53], [11, 10, 12],
    [69, 71, 68], [68, 13, 70], [10, 70, 13], [51, 50, 52], [13, 68, 71],
    [52, 71, 69], [12, 10, 13], [71, 52, 50], [71, 14, 13], [50, 49, 71],
    [49, 48, 71], [14, 16, 15], [14, 71, 48], [17, 19, 18], [17, 20, 19],
    [48, 16, 14], [48, 47, 16], [47, 46, 16], [16, 46, 45], [23, 22, 24],
    [21, 24, 22], [17, 16, 45], [20, 17, 45], [21, 25, 24], [27, 26, 28],
    [20, 72, 21], [25, 21, 72], [45, 72, 20], [25, 28, 26], [44, 73, 45],
    [72, 45, 73], [28, 25, 29], [29, 25, 31], [43, 73, 44], [73, 43, 40],
    [72, 73, 39], [72, 31, 25], [42, 40, 43], [31, 30, 29], [39, 73, 40],
    [42, 41, 40], [72, 33, 31], [32, 31, 33], [39, 38, 72], [33, 72, 38],
    [33, 38, 34], [37, 35, 38], [34, 38, 35], [35, 37, 36]])

Trazar la triangulación especificada por el usuario

Vamos a trazar la triangulación especificada por el usuario utilizando la función triplot.

fig2, ax2 = plt.subplots()
ax2.set_aspect('equal')
ax2.triplot(x, y, triangles, 'go-', lw=1.0)
ax2.set_title('Triplot of User-Specified Triangulation')
ax2.set_xlabel('Longitude (grados)')
ax2.set_ylabel('Latitud (grados)')

Resumen

En este laboratorio, aprendimos cómo crear y trazar mallas triangulares no estructuradas en Python utilizando la biblioteca Matplotlib. Creamos una triangulación de Delaunay y la tracamos utilizando la función triplot. También creamos una triangulación especificada por el usuario y la tracamos utilizando la función triplot.