1. Indexing Optimization
Effective indexing is crucial for query performance:
// Create compound index
db.users.createIndex({
lastName: 1,
firstName: 1
})
// Create multikey index
db.products.createIndex({
tags: 1
})
2. Query Optimization Techniques
Optimization Strategy |
Description |
Implementation |
Projection |
Limit returned fields |
db.collection.find({}, {name: 1, _id: 0}) |
Query Hints |
Force index usage |
db.collection.find().hint({indexName}) |
Aggregation Pipeline |
Efficient data processing |
db.collection.aggregate([...]) |
graph TD
A[Performance Optimization] --> B[Index Analysis]
A --> C[Query Optimization]
A --> D[Resource Management]
B --> E[Index Creation]
B --> F[Index Removal]
C --> G[Query Restructuring]
D --> H[Memory Tuning]
3. Caching Strategies
Implement efficient caching mechanisms:
## WiredTiger cache configuration
storage:
wiredTiger:
engineConfig:
cacheSizeGB: 4
4. Sharding for Horizontal Scaling
Distribute data across multiple servers:
// Enable sharding for database
sh.enableSharding("mydatabase")
// Shard a collection
sh.shardCollection(
"mydatabase.users",
{ userId: "hashed" }
)
5. Connection Pooling
Optimize database connections:
const MongoClient = require('mongodb').MongoClient;
const client = new MongoClient(url, {
poolSize: 10,
useNewUrlParser: true
});
6. Read and Write Concerns
Configure performance-critical operations:
db.collection.insertOne(
{ data: "example" },
{
writeConcern: {
w: 1,
j: true
}
}
)
Key performance indicators:
- Query execution time
- Index usage
- Memory consumption
- Network latency
LabEx provides simulated scenarios for practicing advanced MongoDB performance optimization techniques.
7. Hardware Considerations
Performance optimization involves:
- SSD storage
- Sufficient RAM
- Multi-core processors
- Regular performance audits
- Periodic index maintenance
- Query pattern analysis
- Scalability planning
By implementing these strategies, developers can significantly enhance MongoDB database performance and scalability.