Flexible Matrix Design
Comprehensive Matrix Implementation
Designing a flexible matrix requires careful consideration of performance, usability, and memory management. This section explores advanced techniques for creating adaptable matrix structures.
Design Principles
graph TD
A[Flexible Matrix Design] --> B[Memory Efficiency]
A --> C[Type Flexibility]
A --> D[Performance Optimization]
A --> E[Error Handling]
Template-Based Matrix Implementation
#include <vector>
#include <stdexcept>
#include <type_traits>
template <typename T, typename Allocator = std::allocator<T>>
class AdvancedMatrix {
private:
std::vector<T, Allocator> data;
size_t rows;
size_t cols;
public:
// Type traits for compile-time type checking
static_assert(std::is_arithmetic<T>::value,
"Matrix can only be created with numeric types");
// Constructors
AdvancedMatrix() : rows(0), cols(0) {}
AdvancedMatrix(size_t r, size_t c, const T& initial = T())
: rows(r), cols(c), data(r * c, initial) {}
// Flexible resizing method
void resize(size_t new_rows, size_t new_cols, const T& value = T()) {
std::vector<T, Allocator> new_data(new_rows * new_cols, value);
// Copy existing data
size_t copy_rows = std::min(rows, new_rows);
size_t copy_cols = std::min(cols, new_cols);
for (size_t i = 0; i < copy_rows; ++i) {
for (size_t j = 0; j < copy_cols; ++j) {
new_data[i * new_cols + j] = data[i * cols + j];
}
}
data = std::move(new_data);
rows = new_rows;
cols = new_cols;
}
// Element access with bounds checking
T& operator()(size_t row, size_t col) {
if (row >= rows || col >= cols) {
throw std::out_of_range("Matrix index out of bounds");
}
return data[row * cols + col];
}
// Const version of element access
const T& operator()(size_t row, size_t col) const {
if (row >= rows || col >= cols) {
throw std::out_of_range("Matrix index out of bounds");
}
return data[row * cols + col];
}
// Matrix operations
AdvancedMatrix operator+(const AdvancedMatrix& other) const {
if (rows != other.rows || cols != other.cols) {
throw std::invalid_argument("Matrix dimensions must match");
}
AdvancedMatrix result(rows, cols);
for (size_t i = 0; i < rows * cols; ++i) {
result.data[i] = data[i] + other.data[i];
}
return result;
}
// Utility methods
size_t getRows() const { return rows; }
size_t getCols() const { return cols; }
bool isEmpty() const { return data.empty(); }
};
// Matrix Type Compatibility
using IntMatrix = AdvancedMatrix<int>;
using DoubleMatrix = AdvancedMatrix<double>;
Matrix Design Characteristics
Feature |
Description |
Benefit |
Template-Based |
Supports multiple numeric types |
Type Flexibility |
Dynamic Resizing |
Adjust matrix dimensions at runtime |
Memory Efficiency |
Bounds Checking |
Prevent out-of-range access |
Error Prevention |
Move Semantics |
Optimize memory operations |
Performance |
Advanced Usage Example
int main() {
try {
// Create integer matrix
IntMatrix intMatrix(3, 3, 0);
intMatrix(1, 1) = 42;
// Resize matrix
intMatrix.resize(5, 5, 10);
// Create double matrix
DoubleMatrix doubleMatrix(2, 2, 3.14);
// Matrix addition
DoubleMatrix resultMatrix = doubleMatrix + doubleMatrix;
std::cout << "Matrix Rows: " << intMatrix.getRows()
<< ", Columns: " << intMatrix.getCols() << std::endl;
}
catch (const std::exception& e) {
std::cerr << "Error: " << e.what() << std::endl;
return 1;
}
return 0;
}
Design Considerations
graph TD
A[Matrix Design] --> B[Compile-Time Safety]
A --> C[Runtime Flexibility]
A --> D[Performance Optimization]
B --> E[Type Constraints]
C --> F[Dynamic Resizing]
D --> G[Efficient Memory Management]
Key Takeaways
- Use templates for type-safe, flexible matrices
- Implement robust error handling
- Optimize memory management
- Provide intuitive interface for matrix operations
Note: This implementation is optimized for LabEx's Ubuntu 22.04 development environment, demonstrating a comprehensive approach to flexible matrix design.