Code Examples
graph TD
A[List Uniformity Code Examples] --> B[Data Validation]
A --> C[Scientific Computing]
A --> D[Machine Learning]
A --> E[Financial Analysis]
1. Data Validation in Scientific Computing
def validate_temperature_readings(readings, min_temp=-50, max_temp=50):
"""
Validate temperature sensor readings for consistency
Args:
readings (list): Temperature measurements
min_temp (float): Minimum acceptable temperature
max_temp (float): Maximum acceptable temperature
Returns:
bool: Whether readings are uniform and valid
"""
return all(
isinstance(temp, (int, float)) and
min_temp <= temp <= max_temp
for temp in readings
)
## Ubuntu 22.04 Example
sensor_data = [22.5, 23.1, 22.8, 23.0]
print(validate_temperature_readings(sensor_data)) ## True
2. Machine Learning Data Preprocessing
def check_feature_vector(features, expected_dimensions=4):
"""
Verify uniformity of feature vectors in machine learning datasets
Args:
features (list): List of feature vectors
expected_dimensions (int): Expected feature vector length
Returns:
dict: Validation results
"""
return {
'is_uniform_length': all(len(vector) == expected_dimensions for vector in features),
'is_uniform_type': all(isinstance(vector, list) for vector in features)
}
## LabEx Machine Learning Example
ml_features = [
[1.0, 2.0, 3.0, 4.0],
[0.5, 1.5, 2.5, 3.5],
[2.0, 3.0, 4.0, 5.0]
]
print(check_feature_vector(ml_features))
3. Financial Transaction Analysis
Transaction Amount Verification
def analyze_transaction_uniformity(transactions, currency='USD'):
"""
Analyze uniformity and statistics of financial transactions
Args:
transactions (list): List of transaction amounts
currency (str): Transaction currency
Returns:
dict: Transaction analysis results
"""
return {
'is_uniform_currency': currency == 'USD',
'is_positive': all(amount > 0 for amount in transactions),
'total_amount': sum(transactions),
'average_amount': sum(transactions) / len(transactions)
}
## Financial Data Example
transaction_amounts = [100.50, 250.75, 75.25, 300.00]
print(analyze_transaction_uniformity(transaction_amounts))
def advanced_uniformity_check(data,
check_type=True,
check_range=True,
min_val=None,
max_val=None):
"""
Advanced method for comprehensive list uniformity validation
Args:
data (list): Input list for validation
check_type (bool): Verify type uniformity
check_range (bool): Verify value range
min_val (float): Minimum acceptable value
max_val (float): Maximum acceptable value
Returns:
dict: Detailed uniformity validation results
"""
results = {
'type_uniform': True,
'range_uniform': True,
'details': []
}
if check_type:
results['type_uniform'] = len(set(type(item) for item in data)) == 1
if check_range and (min_val is not None or max_val is not None):
range_check = all(
(min_val is None or item >= min_val) and
(max_val is None or item <= max_val)
for item in data
)
results['range_uniform'] = range_check
return results
## Comprehensive Example
sample_data = [10, 20, 30, 40, 50]
print(advanced_uniformity_check(sample_data, min_val=5, max_val=100))
Comparative Analysis
Scenario |
Complexity |
Validation Depth |
Simple Type Check |
Low |
Basic |
Range Validation |
Medium |
Intermediate |
Comprehensive Check |
High |
Advanced |
Best Practices
- Choose appropriate validation method
- Consider performance implications
- Handle edge cases
- Provide meaningful error messages
- Use type hints and docstrings
By mastering these techniques, LabEx learners can develop robust data validation strategies in Python.