Benchmarking Concurrent Futures
import time
import concurrent.futures
import multiprocessing
def measure_performance(func, *args):
start_time = time.time()
result = func(*args)
end_time = time.time()
return result, end_time - start_time
def cpu_intensive_task(n):
return sum(i * i for i in range(n))
Optimization Strategies
1. Worker Count Optimization
graph TD
A[Optimal Worker Count] --> B[CPU Cores]
A --> C[Task Complexity]
A --> D[Memory Constraints]
Recommended Worker Allocation
Workload Type |
Recommended Workers |
I/O Bound |
CPU Cores * 2 + 1 |
CPU Bound |
CPU Cores |
Mixed Workload |
Adaptive Allocation |
Dynamic Worker Allocation
def adaptive_worker_pool(tasks):
## Automatically determine optimal worker count
cpu_count = multiprocessing.cpu_count()
max_workers = min(cpu_count * 2, len(tasks))
with concurrent.futures.ThreadPoolExecutor(max_workers=max_workers) as executor:
results = list(executor.map(process_task, tasks))
return results
1. Chunking Large Datasets
def chunked_processing(data, chunk_size=1000):
def process_chunk(chunk):
## Perform processing on chunk
return [item * 2 for item in chunk]
with concurrent.futures.ProcessPoolExecutor() as executor:
chunks = [data[i:i + chunk_size] for i in range(0, len(data), chunk_size)]
results = list(executor.map(process_chunk, chunks))
return [item for sublist in results for item in sublist]
2. Memory-Efficient Processing
def memory_efficient_executor(large_iterable):
with concurrent.futures.ProcessPoolExecutor() as executor:
## Use generator to reduce memory consumption
for result in executor.map(heavy_computation, large_iterable):
yield result
import cProfile
import pstats
def profile_concurrent_task():
profiler = cProfile.Profile()
with concurrent.futures.ThreadPoolExecutor() as executor:
profiler.enable()
futures = [executor.submit(cpu_intensive_task, 1000000) for _ in range(10)]
concurrent.futures.wait(futures)
profiler.disable()
stats = pstats.Stats(profiler).sort_stats('cumulative')
stats.print_stats()
Common Pitfalls and Solutions
Pitfall |
Solution |
Excessive Thread Creation |
Use Thread/Process Pools |
Global Interpreter Lock |
Use ProcessPoolExecutor |
Unhandled Exceptions |
Implement Robust Error Handling |
Optimization Checklist
- Choose appropriate executor type
- Optimize worker count
- Implement chunking for large datasets
- Use generator-based processing
- Profile and measure performance
LabEx recommends continuous monitoring and iterative optimization when working with concurrent futures to achieve maximum performance.