Real-world Code Examples
Data Validation Scenarios
Email Validation Workflow
def validate_email(email):
return '@' in email and '.' in email and len(email) > 5
emails = [
'[email protected]',
'invalid-email',
'test@domain',
'[email protected]'
]
has_valid_emails = any(map(validate_email, emails))
print(f"Valid emails exist: {has_valid_emails}")
Network and Security Checks
IP Address Validation
def is_private_ip(ip):
octets = ip.split('.')
return (
len(octets) == 4 and
int(octets[0]) in [10, 172, 192] and
0 <= int(octets[1]) <= 255
)
ip_addresses = [
'192.168.1.1',
'10.0.0.1',
'8.8.8.8',
'172.16.0.1'
]
has_private_ips = any(map(is_private_ip, ip_addresses))
print(f"Private IPs detected: {has_private_ips}")
Data Processing Workflows
Log Analysis
def is_critical_log(log_entry):
critical_keywords = ['error', 'critical', 'fatal']
return any(keyword in log_entry.lower() for keyword in critical_keywords)
log_entries = [
'System startup',
'Database connection error',
'Normal operation',
'Routine maintenance'
]
critical_logs_exist = any(map(is_critical_log, log_entries))
print(f"Critical logs found: {critical_logs_exist}")
Resource Utilization Check
def is_high_usage(resource):
return resource['usage'] > 80
system_resources = [
{'name': 'CPU', 'usage': 65},
{'name': 'Memory', 'usage': 75},
{'name': 'Disk', 'usage': 40}
]
high_resource_usage = any(map(is_high_usage, system_resources))
print(f"High resource usage detected: {high_resource_usage}")
Workflow Visualization
graph LR
A[Input Data] --> B[map() Transformation]
B --> C[any() Condition Check]
C --> D[Decision Making]
Comparative Analysis Table
Scenario |
Use Case |
Validation Method |
Complexity |
Email Validation |
Check email format |
Custom function |
Low |
IP Address Check |
Network security |
Octet parsing |
Medium |
Log Analysis |
System monitoring |
Keyword matching |
Medium |
Resource Tracking |
Performance monitoring |
Threshold comparison |
Low |
Advanced Error Handling
def safe_process(items, validator):
try:
return any(map(validator, items))
except Exception as e:
print(f"Processing error: {e}")
return False
## LabEx Recommended Error Handling Pattern
sensitive_data = ['secret1', 'secret2', None]
def is_sensitive(item):
return item is not None and 'secret' in str(item)
result = safe_process(sensitive_data, is_sensitive)
print(f"Sensitive data detected: {result}")
Machine Learning Data Preprocessing
def is_valid_feature(feature):
return (
feature is not None and
not (isinstance(feature, (int, float)) and feature == 0)
)
ml_dataset = [0, 1.5, None, 2.3, 0, 4.1]
valid_features_exist = any(map(is_valid_feature, ml_dataset))
print(f"Valid features available: {valid_features_exist}")