Practical Usage Patterns
Common Scenarios for all
1. Library Package Management
## data_processing/__init__.py
from .cleaners import DataCleaner
from .transformers import DataTransformer
from .validators import DataValidator
__all__ = [
'DataCleaner',
'DataTransformer',
'DataValidator'
]
Export Pattern Strategies
Categorized Export Techniques
Pattern |
Description |
Use Case |
Explicit Export |
Manually list public symbols |
Small, stable modules |
Filtered Export |
Programmatically generate exports |
Dynamic module structures |
Namespace Control |
Restrict imported symbols |
Complex library design |
Dynamic Export Generation
## advanced_module.py
import inspect
def auto_generate_exports(module, prefix=''):
return [
name for name, obj in inspect.getmembers(module)
if not name.startswith('_') and
(prefix == '' or name.startswith(prefix))
]
__all__ = auto_generate_exports(globals(), prefix='get_')
Export Workflow Visualization
graph TD
A[Module Definition] --> B{Export Strategy}
B -->|Manual| C[Explicit __all__]
B -->|Automatic| D[Dynamic Generation]
C --> E[Controlled Exports]
D --> E
Advanced Usage Patterns
Nested Package Exports
## analytics/__init__.py
from .statistical import mean, median
from .visualization import plot_graph
__all__ = [
'mean',
'median',
'plot_graph'
]
- Minimize export list size
- Use meaningful symbol names
- Avoid circular imports
- Document export intentions
LabEx recommends treating __all__
as a strategic module design tool, enhancing code clarity and maintainability.
Error Prevention Techniques
def validate_exports(module_exports):
"""Ensure exported symbols actually exist"""
for symbol in module_exports:
if symbol not in globals():
raise ImportError(f"Symbol {symbol} not found")
validate_exports(__all__)
Key Takeaways
__all__
provides fine-grained import control
- Supports modular and clean code architecture
- Enables predictable module interfaces
- Enhances code readability and maintainability