Data Retrieval Techniques
Advanced Data Retrieval Strategies
API Data Retrieval
import requests
def fetch_data_from_api(url):
response = requests.get(url)
return response.json()
## Example API call
api_data = fetch_data_from_api('https://api.example.com/data')
Web Scraping Techniques
import requests
from bs4 import BeautifulSoup
def scrape_website(url):
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
return soup.find_all('div', class_='content')
Data Retrieval Workflow
graph TD
A[Data Source] --> B{Retrieval Method}
B --> |API| C[HTTP Request]
B --> |Database| D[Query Execution]
B --> |Web Scraping| E[HTML Parsing]
C --> F[Data Processing]
D --> F
E --> F
Retrieval Method Comparison
Method |
Speed |
Complexity |
Use Case |
Direct API |
Fast |
Low |
Structured Data |
Web Scraping |
Moderate |
High |
Unstructured Data |
Database Query |
Fast |
Moderate |
Structured Datasets |
Asynchronous Data Retrieval
import asyncio
import aiohttp
async def fetch_multiple_urls(urls):
async with aiohttp.ClientSession() as session:
tasks = [session.get(url) for url in urls]
responses = await asyncio.gather(*tasks)
return [await response.json() for response in responses]
Pagination and Large Dataset Handling
def retrieve_paginated_data(base_url, total_pages):
all_data = []
for page in range(1, total_pages + 1):
url = f"{base_url}?page={page}"
page_data = fetch_data_from_api(url)
all_data.extend(page_data)
return all_data
Advanced Filtering Techniques
def filter_data(data, conditions):
return [
item for item in data
if all(condition(item) for condition in conditions)
]
## Example filter
filtered_data = filter_data(
raw_data,
[
lambda x: x['age'] > 25,
lambda x: x['city'] == 'New York'
]
)
- Use caching mechanisms
- Implement rate limiting
- Choose appropriate data structures
- Minimize network requests
Error Handling and Resilience
def robust_data_retrieval(url, max_retries=3):
for attempt in range(max_retries):
try:
return fetch_data_from_api(url)
except requests.RequestException as e:
if attempt == max_retries - 1:
raise
LabEx Recommendation
At LabEx, we emphasize mastering diverse data retrieval techniques. Our advanced Python courses provide comprehensive training in handling complex data acquisition scenarios.