Practical Applications
Real-world Timestamp Scenarios
graph TD
A[Timestamp Applications] --> B[Logging]
A --> C[Performance Tracking]
A --> D[Data Analysis]
A --> E[Financial Systems]
1. Log File Analysis
from datetime import datetime, timedelta
class LogAnalyzer:
def __init__(self, log_file):
self.log_file = log_file
def filter_logs_by_time(self, start_time, end_time):
filtered_logs = []
with open(self.log_file, 'r') as file:
for line in file:
try:
log_time = datetime.strptime(
line.split()[0],
"%Y-%m-%d %H:%M:%S"
)
if start_time <= log_time <= end_time:
filtered_logs.append(line)
except ValueError:
continue
return filtered_logs
## Usage example
analyzer = LogAnalyzer('/var/log/application.log')
start = datetime.now() - timedelta(hours=24)
recent_logs = analyzer.filter_logs_by_time(start, datetime.now())
import time
from datetime import datetime
class PerformanceTracker:
def __init__(self):
self.start_times = {}
self.performance_logs = []
def start_task(self, task_name):
self.start_times[task_name] = datetime.now()
def end_task(self, task_name):
end_time = datetime.now()
start_time = self.start_times.get(task_name)
if start_time:
duration = end_time - start_time
self.performance_logs.append({
'task': task_name,
'start': start_time,
'end': end_time,
'duration': duration
})
return duration
return None
import pandas as pd
def normalize_timestamps(df, timestamp_column):
"""
Normalize timestamps in a pandas DataFrame
"""
df[timestamp_column] = pd.to_datetime(
df[timestamp_column],
errors='coerce'
)
## Remove invalid timestamps
df = df.dropna(subset=[timestamp_column])
## Convert to UTC
df[timestamp_column] = df[timestamp_column].dt.tz_localize('UTC')
return df
Timestamp Processing Techniques
Technique |
Use Case |
Key Benefit |
Filtering |
Log analysis |
Precise data selection |
Normalization |
Data cleaning |
Consistent time representation |
Aggregation |
Time-series analysis |
Summarizing temporal data |
4. Time-based Caching Mechanism
from functools import wraps
from datetime import datetime, timedelta
def time_cached(duration=timedelta(minutes=5)):
def decorator(func):
cache = {}
@wraps(func)
def wrapper(*args, **kwargs):
current_time = datetime.now()
cache_key = str(args) + str(kwargs)
if (cache_key in cache and
current_time - cache['timestamp'] < duration):
return cache['result']
result = func(*args, **kwargs)
cache['result'] = result
cache['timestamp'] = current_time
return result
return wrapper
return decorator
Advanced Considerations
- Handle timezone conversions
- Implement robust error handling
- Consider performance implications
- Use appropriate precision
At LabEx, we emphasize the importance of flexible and efficient timestamp management in complex software systems.
Best Practices
- Use standard datetime libraries
- Normalize timestamps early
- Handle timezone complexities
- Implement comprehensive error checking
- Optimize for your specific use case