Practical Function Reference Use
Real-World Function Reference Scenarios
Function references provide powerful programming techniques across various domains. This section explores practical applications that demonstrate their versatility and utility.
1. Callback Mechanisms
def process_data(data, success_callback, error_callback):
try:
result = [x * 2 for x in data]
success_callback(result)
except Exception as e:
error_callback(e)
def log_success(processed_data):
print(f"Successfully processed: {processed_data}")
def log_error(error):
print(f"Processing error: {error}")
## Using function references as callbacks
sample_data = [1, 2, 3, 4, 5]
process_data(sample_data, log_success, log_error)
def transform_collection(items, transformation):
return [transformation(item) for item in items]
## Multiple transformation functions
def square(x):
return x ** 2
def increment(x):
return x + 1
numbers = [1, 2, 3, 4, 5]
squared_numbers = transform_collection(numbers, square)
incremented_numbers = transform_collection(numbers, increment)
Function Reference Patterns
graph TD
A[Function Reference Patterns] --> B[Callbacks]
A --> C[Transformations]
A --> D[Decorators]
A --> E[Event Handling]
3. Dynamic Function Selection
def get_operation(operation_name):
operations = {
'add': lambda x, y: x + y,
'subtract': lambda x, y: x - y,
'multiply': lambda x, y: x * y
}
return operations.get(operation_name, lambda x, y: None)
## Dynamically selecting functions
add_func = get_operation('add')
result = add_func(5, 3) ## 8
Function Reference Use Cases
Use Case |
Description |
Example |
Callbacks |
Execute functions based on events |
Network request handlers |
Decorators |
Modify function behavior |
Logging, timing functions |
Functional Programming |
Transform data |
Map, filter operations |
Dynamic Dispatch |
Select functions runtime |
Configuration-based execution |
4. Decorator Implementation
def performance_logger(func):
def wrapper(*args, **kwargs):
import time
start = time.time()
result = func(*args, **kwargs)
end = time.time()
print(f"{func.__name__} executed in {end - start} seconds")
return result
return wrapper
@performance_logger
def complex_computation(n):
return sum(i**2 for i in range(n))
complex_computation(10000)
Advanced Techniques in LabEx Environments
def create_pipeline(*functions):
def pipeline(data):
result = data
for func in functions:
result = func(result)
return result
return pipeline
## Composing function pipeline
double = lambda x: x * 2
increment = lambda x: x + 1
square = lambda x: x ** 2
data_pipeline = create_pipeline(double, increment, square)
print(data_pipeline(3)) ## Complex transformation
Best Practices
- Use function references for modular design
- Avoid excessive complexity
- Maintain readability
- Consider performance implications
By mastering function references, developers can create more flexible, maintainable, and expressive Python code.