Advanced Representation Methods
Advanced numeric string representation goes beyond basic formatting, enabling complex transformations and specialized display techniques.
Decimal and Precision Management
from decimal import Decimal, getcontext
## High-precision decimal handling
getcontext().prec = 6
precise_value = Decimal('1.23456789')
print(f"Precise value: {precise_value}")
Numeric Base Conversions
## Base conversion techniques
decimal_value = 255
## Binary representation
binary_str = bin(decimal_value)[2:]
print(f"Binary: {binary_str}")
## Hexadecimal representation
hex_str = hex(decimal_value)[2:]
print(f"Hexadecimal: {hex_str}")
Conversion Strategy Flowchart
graph TD
A[Numeric Value] --> B{Conversion Type}
B --> |Decimal| C[Standard Representation]
B --> |Binary| D[Base-2 Representation]
B --> |Hexadecimal| E[Base-16 Representation]
B --> |Custom Base| F[Flexible Conversion]
Custom Base Conversion Function
def custom_base_conversion(number, base):
if base < 2 or base > 36:
raise ValueError("Base must be between 2 and 36")
digits = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
if number < 0:
sign = -1
elif number == 0:
return digits[0]
else:
sign = 1
number *= sign
result = []
while number:
number, remainder = divmod(number, base)
result.append(digits[remainder])
if sign < 0:
result.append('-')
return ''.join(reversed(result))
## Example usage
print(custom_base_conversion(255, 16)) ## Hexadecimal
print(custom_base_conversion(42, 2)) ## Binary
Numeric Representation Techniques
Technique |
Description |
Example |
Decimal Precision |
Control decimal places |
Decimal('1.23456') |
Base Conversion |
Transform between number systems |
bin() , hex() |
Scientific Notation |
Exponential representation |
"{:e}".format(value) |
Complex Number Representation
## Complex number string formatting
complex_num = 3 + 4j
print(f"Complex number: {complex_num}")
print(f"Real part: {complex_num.real}")
print(f"Imaginary part: {complex_num.imag}")
In LabEx programming environments, leverage:
- Decimal module for high-precision calculations
- Custom conversion functions
- Comprehensive error handling
- Use built-in conversion functions when possible
- Implement caching for repetitive conversions
- Choose appropriate precision based on requirements
Error Handling in Advanced Representations
def safe_numeric_conversion(value, conversion_func):
try:
return conversion_func(value)
except (ValueError, TypeError) as e:
print(f"Conversion error: {e}")
return None
## Example usage
result = safe_numeric_conversion('255', int)
print(result)