Real-World Angle Manipulation Techniques
Trigonometric Calculations
import math
import numpy as np
def complex_angle_transformation(angle_degrees):
"""
Demonstrate comprehensive angle transformations
"""
## Basic conversions
angle_radians = math.radians(angle_degrees)
## Trigonometric calculations
sine_value = math.sin(angle_radians)
cosine_value = math.cos(angle_radians)
tangent_value = math.tan(angle_radians)
return {
'degrees': angle_degrees,
'radians': angle_radians,
'sine': sine_value,
'cosine': cosine_value,
'tangent': tangent_value
}
## Example usage
result = complex_angle_transformation(45)
print(result)
Rotation Matrix Generation
def create_rotation_matrix(angle_degrees):
"""
Generate 2D rotation matrix
"""
angle_radians = math.radians(angle_degrees)
cos_theta = math.cos(angle_radians)
sin_theta = math.sin(angle_radians)
rotation_matrix = np.array([
[cos_theta, -sin_theta],
[sin_theta, cos_theta]
])
return rotation_matrix
## Rotation matrix example
rotation_45 = create_rotation_matrix(45)
print("45-degree Rotation Matrix:")
print(rotation_45)
graph LR
A[Input Angle] --> B[Conversion]
B --> C[Trigonometric Calculation]
C --> D[Geometric Transformation]
D --> E[Final Result]
Technique |
Description |
Use Case |
Normalization |
Restrict angle to 0-360° |
Circular calculations |
Interpolation |
Smooth angle transitions |
Animation, graphics |
Vectorization |
Parallel angle operations |
Scientific computing |
def polar_to_cartesian(radius, angle_degrees):
"""
Convert polar coordinates to Cartesian
"""
angle_radians = math.radians(angle_degrees)
x = radius * math.cos(angle_radians)
y = radius * math.sin(angle_radians)
return (x, y)
def cartesian_to_polar(x, y):
"""
Convert Cartesian coordinates to polar
"""
radius = math.sqrt(x**2 + y**2)
angle_radians = math.atan2(y, x)
angle_degrees = math.degrees(angle_radians)
return (radius, angle_degrees)
## Example transformations
polar_point = polar_to_cartesian(5, 45)
cartesian_point = cartesian_to_polar(3.54, 3.54)
print("Polar to Cartesian:", polar_point)
print("Cartesian to Polar:", cartesian_point)
- Use NumPy for vectorized operations
- Leverage built-in math functions
- Minimize redundant calculations
- Choose appropriate data types
At LabEx, we emphasize understanding the mathematical principles behind angle transformations to create efficient and accurate computational solutions.
Error Handling and Validation
def safe_angle_transform(angle, transform_func):
"""
Safely perform angle transformations
"""
try:
## Validate input
if not isinstance(angle, (int, float)):
raise TypeError("Angle must be numeric")
## Normalize angle
normalized_angle = angle % 360
## Apply transformation
result = transform_func(normalized_angle)
return result
except Exception as e:
print(f"Transformation error: {e}")
return None
## Safe transformation example
def example_transform(angle):
return math.sin(math.radians(angle))
result = safe_angle_transform(450, example_transform)
print(result)