Advanced Invocation
Sophisticated Method Calling Techniques
Advanced method invocation goes beyond basic calling, introducing powerful Python programming strategies.
Decorator-Enhanced Method Calls
def performance_tracker(func):
def wrapper(*args, **kwargs):
import time
start = time.time()
result = func(*args, **kwargs)
print(f"Execution time: {time.time() - start} seconds")
return result
return wrapper
class DataAnalyzer:
@performance_tracker
def complex_calculation(self, data):
return sum(data)
Method Resolution Order (MRO)
graph TD
A[Method Call] --> B{Multiple Inheritance}
B --> C[Check Inheritance Hierarchy]
C --> D[Apply C3 Linearization Algorithm]
D --> E[Determine Method Execution Order]
Advanced Calling Strategies
Strategy |
Description |
Use Case |
Partial Method Application |
Freeze Some Arguments |
Functional Programming |
Method Chaining |
Sequential Method Calls |
Fluent Interfaces |
Descriptor Protocol |
Custom Method Access |
Attribute Management |
class MethodInspector:
@classmethod
def get_method_signature(cls, method_name):
method = getattr(cls, method_name)
return method.__code__.co_varnames
class Example:
def custom_method(self, x, y, z=None):
pass
## Dynamic method introspection
signatures = MethodInspector.get_method_signature('custom_method')
Dynamic Method Invocation
class DynamicDispatcher:
def __getattr__(self, name):
def dynamic_method(*args, **kwargs):
print(f"Calling dynamic method: {name}")
return dynamic_method
## Flexible method handling
dispatcher = DynamicDispatcher()
dispatcher.undefined_method() ## Works without pre-definition
Context Management in Method Calls
class ResourceManager:
def __enter__(self):
print("Entering context")
return self
def __exit__(self, exc_type, exc_value, traceback):
print("Exiting context")
def perform_action(self):
print("Performing resource-dependent action")
## Context-managed method calls
with ResourceManager() as manager:
manager.perform_action()
Advanced Inheritance Patterns
- Multiple Inheritance
- Method Overriding
- Super() Function Usage
- Use
functools.lru_cache()
for memoization
- Leverage
__slots__
for memory efficiency
- Implement
__call__()
for callable objects
Error Handling in Advanced Invocation
def method_error_handler(func):
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except Exception as e:
print(f"Method invocation error: {e}")
return wrapper
By mastering these advanced invocation techniques, you'll unlock sophisticated Python programming capabilities.