Practical Examples
Scientific Calculation Example
import math
import statistics
def calculate_statistics(numbers):
mean = statistics.mean(numbers)
median = statistics.median(numbers)
standard_deviation = statistics.stdev(numbers)
return {
'mean': mean,
'median': median,
'std_dev': standard_deviation
}
data = [10, 15, 20, 25, 30]
result = calculate_statistics(data)
print(result)
Data Processing Workflow
graph TD
A[Import Modules] --> B[Load Data]
B --> C[Process Data]
C --> D[Analyze Results]
Web Request Example
import requests
import json
def fetch_github_user(username):
url = f"https://api.github.com/users/{username}"
response = requests.get(url)
if response.status_code == 200:
return response.json()
else:
return None
user_info = fetch_github_user("octocat")
print(json.dumps(user_info, indent=2))
Common Module Usage Scenarios
Scenario |
Modules |
Purpose |
Data Analysis |
numpy, pandas |
Statistical processing |
Web Development |
flask, django |
Backend frameworks |
Machine Learning |
scikit-learn, tensorflow |
Predictive modeling |
System Interaction |
os, sys |
File and system operations |
Error Handling in Imports
try:
import advanced_module
except ImportError:
print("Module not installed. Use pip to install.")
## Fallback mechanism or alternative implementation
from functools import lru_cache
@lru_cache(maxsize=128)
def fibonacci(n):
if n < 2:
return n
return fibonacci(n-1) + fibonacci(n-2)
Practical Tips for LabEx Developers
- Always use virtual environments
- Prefer explicit imports
- Handle potential import errors
- Keep dependencies minimal
- Use type hints for better code readability
By exploring these practical examples, you'll gain hands-on experience with module imports and function usage in Python.