Practical Constraint Usage
Real-World Constraint Applications
Practical constraint usage involves applying type parameter constraints to solve common programming challenges with generic code.
Data Structure Generics
Generic Stack Implementation
type Stack[T any] struct {
items []T
}
func (s *Stack[T]) Push(item T) {
s.items = append(s.items, item)
}
func (s *Stack[T]) Pop() (T, bool) {
if len(s.items) == 0 {
var zero T
return zero, false
}
last := s.items[len(s.items)-1]
s.items = s.items[:len(s.items)-1]
return last, true
}
Database and Repository Patterns
Generic Repository Interface
type Repository[T any] interface {
Create(item T) error
FindByID(id string) (T, error)
Update(item T) error
Delete(id string) error
}
Constraint Usage Patterns
graph TD
A[Constraint Usage] --> B[Type Validation]
A --> C[Performance Optimization]
A --> D[Code Reusability]
Advanced Filtering Techniques
func FilterAndTransform[T any, R any](
slice []T,
filter func(T) bool,
transform func(T) R
) []R {
var result []R
for _, item := range slice {
if filter(item) {
result = append(result, transform(item))
}
}
return result
}
Numeric Processing Constraints
type Numeric interface {
~int | ~int32 | ~int64 | ~float64
}
func MinMax[T Numeric](values []T) (T, T) {
if len(values) == 0 {
var zero T
return zero, zero
}
min, max := values[0], values[0]
for _, v := range values[1:] {
if v < min {
min = v
}
if v > max {
max = v
}
}
return min, max
}
Constraint Usage Scenarios
Scenario |
Constraint Type |
Use Case |
Data Validation |
Comparable |
Sorting, Comparison |
Collection Processing |
Numeric |
Mathematical Operations |
Serialization |
Marshaler |
Data Conversion |
func ParallelProcess[T any](
items []T,
processor func(T) T,
workers int
) []T {
results := make([]T, len(items))
// Parallel processing implementation
return results
}
Best Practices
- Use constraints to enforce type safety
- Minimize runtime type assertions
- Create reusable generic components
Developers using LabEx can leverage these constraint patterns to write more flexible and efficient Go code.