Advanced Implementation Patterns
Complex Generic Variadic Function Design
Nested Generic Constraints
func ProcessMultipleCollections[
T any,
Collection interface{ ~[]T }
](collections ...Collection) []T {
var result []T
for _, collection := range collections {
result = append(result, collection...)
}
return result
}
Functional Programming Techniques
Higher-Order Generic Functions
func MapReduce[T, R any](
items []T,
mapper func(T) R,
reducer func([]R) R
) R {
mapped := make([]R, len(items))
for i, item := range items {
mapped[i] = mapper(item)
}
return reducer(mapped)
}
Constraint Composition Strategies
graph TD
A[Generic Constraint Design] --> B[Predefined Interfaces]
A --> C[Custom Interfaces]
A --> D[Intersection Constraints]
Advanced Type Constraint Patterns
Pattern |
Description |
Use Case |
Intersection Constraints |
Combine multiple type constraints |
Complex type requirements |
Recursive Constraints |
Self-referencing constraints |
Recursive data structures |
Conditional Constraints |
Context-dependent type limits |
Dynamic type checking |
Recursive Generic Constraints
type Tree[T any] struct {
Value T
Left, Right *Tree[T]
}
func (t *Tree[T]) Traverse(fn func(T)) {
if t == nil {
return
}
fn(t.Value)
t.Left.Traverse(fn)
t.Right.Traverse(fn)
}
func ParallelProcess[T, R any](
items []T,
processor func(T) R,
workers int
) []R {
results := make([]R, len(items))
sem := make(chan struct{}, workers)
for i, item := range items {
sem <- struct{}{}
go func(idx int, val T) {
defer func() { <-sem }()
results[idx] = processor(val)
}(i, item)
}
return results
}
Error Handling in Generic Functions
func SafeProcess[T any, E error](
fn func() (T, E)
) (T, E) {
defer func() {
if r := recover(); r != nil {
log.Printf("Recovered from panic: %v", r)
}
}()
return fn()
}
Advanced Type Inference Techniques
func InferAndTransform[
T any,
R comparable
](
collection []T,
transformer func(T) R
) map[R][]T {
result := make(map[R][]T)
for _, item := range collection {
key := transformer(item)
result[key] = append(result[key], item)
}
return result
}
Best Practices
- Use generic constraints judiciously
- Prioritize type safety and readability
- Consider performance implications
- Leverage LabEx's powerful type system
By mastering these advanced implementation patterns, developers can create more flexible, type-safe, and efficient Go applications.