Extending Data Types
Introduction to Data Type Extension
Data type extension in Python allows developers to modify and enhance existing types, creating more specialized and powerful data structures that meet specific programming requirements.
Inheritance-Based Extension
Basic Inheritance
class BaseList(list):
def average(self):
return sum(self) / len(self)
def filter_positive(self):
return [x for x in self if x > 0]
## Extended functionality
numbers = BaseList([1, -2, 3, -4, 5])
print(numbers.average()) ## Custom method
print(numbers.filter_positive()) ## Custom filtering
Advanced Type Customization
Custom Collection Types
from collections import UserDict
class SmartDict(UserDict):
def get_keys_by_value(self, value):
return [k for k, v in self.data.items() if v == value]
def merge(self, other_dict):
self.data.update(other_dict)
Type Extension Strategies
flowchart TD
A[Type Extension Methods] --> B[Inheritance]
A --> C[Composition]
A --> D[Metaclass Modification]
A --> E[Decorator Patterns]
Composition vs Inheritance
Approach |
Pros |
Cons |
Inheritance |
Direct method extension |
Tight coupling |
Composition |
More flexible |
Requires more code |
Mixins |
Modular extension |
Potential complexity |
Protocol and Abstract Base Classes
from abc import ABC, abstractmethod
class DataProcessor(ABC):
@abstractmethod
def process(self, data):
pass
class JSONProcessor(DataProcessor):
def process(self, data):
return json.dumps(data)
Advanced Type Manipulation
Type Hinting and Generic Types
from typing import TypeVar, Generic
T = TypeVar('T')
class Stack(Generic[T]):
def __init__(self):
self.items = []
def push(self, item: T):
self.items.append(item)
def pop(self) -> T:
return self.items.pop()
- Minimize method overhead
- Use built-in type methods when possible
- Profile custom type implementations
- Consider memory and computational complexity
Extension Techniques
- Subclassing
- Monkey patching
- Composition
- Metaclass programming
- Descriptor protocols
Best Practices
- Follow SOLID principles
- Keep extensions focused
- Maintain type compatibility
- Document custom behaviors
By exploring these techniques in LabEx's Python environment, developers can create more robust and flexible data structures tailored to specific project requirements.