Praktische Beispiele zur Exponentialrechnung
Wissenschaftliche und finanzielle Berechnungen
Modellierung des Bevölkerungswachstums
def population_growth(initial_population, growth_rate, years):
return initial_population * (1 + growth_rate) ** years
population = 1000
annual_rate = 0.05
projection = population_growth(population, annual_rate, 10)
print(f"Population after 10 years: {projection}")
Zinseszinsberechnung
def compound_interest(principal, rate, time, compounds_per_year):
return principal * (1 + rate/compounds_per_year) ** (compounds_per_year * time)
initial_investment = 1000
interest_rate = 0.08
years = 5
result = compound_interest(initial_investment, interest_rate, years, 12)
print(f"Total value: {result:.2f}")
Anwendungen in der Data Science
graph TD
A[Exponential Use Cases] --> B[Machine Learning]
A --> C[Statistical Analysis]
A --> D[Signal Processing]
import numpy as np
def normalize_data(data):
return np.log1p(data) ## Log transformation
raw_data = [10, 100, 1000, 10000]
normalized = normalize_data(raw_data)
print("Normalized data:", normalized)
Leistungstests
Szenario |
Exponentialmethode |
Typische Anwendung |
Finanzielle |
Zinseszinswachstum |
Investitionsmodellierung |
Wissenschaftliche |
Logarithmische Skala |
Datennormalisierung |
Ingenieurwesen |
Exponentieller Zerfall |
Signalverarbeitung |
Fehler- und Unsicherheitsberechnungen
def calculate_uncertainty(base_value, error_rate):
return base_value * (1 + error_rate) ** 2
measurement = 100
uncertainty_factor = 0.05
error_range = calculate_uncertainty(measurement, uncertainty_factor)
print(f"Measurement with uncertainty: {error_range}")
LabEx-Empfohlene Praxis
def advanced_exponential_analysis(data_points):
"""
Perform comprehensive exponential analysis
Demonstrates LabEx best practices in scientific computing
"""
transformed_data = [np.exp(x) for x in data_points]
return transformed_data
sample_data = [0.1, 0.5, 1.0, 2.0]
result = advanced_exponential_analysis(sample_data)
print("Exponentially transformed data:", result)