Leistungsvergleich und Best Practices
Nachdem wir nun verschiedene Methoden zum Finden gemeinsamer Elemente verstehen und praktische Anwendungen gesehen haben, wollen wir die Leistung dieser Methoden vergleichen und einige Best Practices festlegen.
Leistung messen
Erstellen wir ein Skript, um die Leistung der verschiedenen Methoden zum Finden gemeinsamer Elemente zu messen:
- Erstellen Sie eine neue Datei namens
performance_test.py
mit folgendem Inhalt:
import time
import random
def measure_time(func, *args):
"""Measure the execution time of a function"""
start_time = time.time()
result = func(*args)
end_time = time.time()
return result, end_time - start_time
## Create large test lists with some overlap
def create_test_lists(size, overlap_percent):
"""Create two lists of the given size with specified overlap percentage"""
overlap_size = int(size * overlap_percent / 100)
## Create list1 with random numbers
list1 = random.sample(range(1, size * 10), size)
## Create list2 with some elements from list1 (overlap) and some new elements
overlap_elements = random.sample(list1, overlap_size)
remaining_size = size - overlap_size
new_elements = random.sample([x for x in range(1, size * 10) if x not in list1], remaining_size)
list2 = overlap_elements + new_elements
random.shuffle(list2)
return list1, list2
## Methods to find common elements
def using_loop(list1, list2):
common = []
for item in list1:
if item in list2:
common.append(item)
return common
def using_sets(list1, list2):
return list(set(list1) & set(list2))
def using_comprehension(list1, list2):
return [item for item in list1 if item in list2]
## Test with different list sizes
sizes = [100, 1000, 10000]
overlap = 50 ## 50% overlap
print("Performance comparison for finding common elements:")
print("-" * 60)
print(f"{'Size':<10}{'Loop (s)':<15}{'Set (s)':<15}{'Comprehension (s)':<20}")
print("-" * 60)
for size in sizes:
list1, list2 = create_test_lists(size, overlap)
## Measure time for each method
_, loop_time = measure_time(using_loop, list1, list2)
_, set_time = measure_time(using_sets, list1, list2)
_, comp_time = measure_time(using_comprehension, list1, list2)
print(f"{size:<10}{loop_time:<15.6f}{set_time:<15.6f}{comp_time:<20.6f}")
- Führen Sie das Skript aus:
python3 performance_test.py
Sie sollten einen Leistungsvergleich zwischen den drei Methoden sehen, mit Ausführungszeiten für verschiedene Listengrößen. Die Ausgabe sieht in etwa so aus (die tatsächlichen Zeiten variieren):
Performance comparison for finding common elements:
------------------------------------------------------------
Size Loop (s) Set (s) Comprehension (s)
------------------------------------------------------------
100 0.000134 0.000050 0.000117
1000 0.008561 0.000247 0.009018
10000 0.910376 0.001944 0.915267
Best Practices
Basierend auf dem, was wir gelernt haben, erstellen wir eine Datei mit Best Practices für das Finden gemeinsamer Elemente in Python-Listen:
- Erstellen Sie eine neue Datei namens
best_practices.py
mit folgendem Inhalt:
"""
Best Practices for Finding Common Elements in Python Lists
This file demonstrates recommended approaches for different scenarios
when finding common elements between lists.
"""
## Sample lists for demonstration
small_list1 = [1, 2, 3, 4, 5]
small_list2 = [4, 5, 6, 7, 8]
large_list1 = list(range(1, 10001))
large_list2 = list(range(5001, 15001))
print("Best Practices for Finding Common Elements in Python Lists")
print("=" * 60)
print("\n1. For small lists (less than ~100 elements):")
print(" Any method works well, but set intersection is still recommended for clarity:")
common_small = list(set(small_list1) & set(small_list2))
print(f" Common elements: {common_small}")
print("\n2. For large lists (100+ elements):")
print(" Always use set intersection for performance:")
## Using set method for large lists
start_time = __import__('time').time()
common_large = list(set(large_list1) & set(large_list2))
end_time = __import__('time').time()
print(f" Found {len(common_large)} common elements in {end_time - start_time:.6f} seconds")
print("\n3. When order matters:")
print(" Use list comprehension with a set for lookup efficiency:")
lookup_set = set(small_list2) ## Convert the second list to a set for O(1) lookups
ordered_common = [item for item in small_list1 if item in lookup_set]
print(f" Common elements (preserving order from list1): {ordered_common}")
print("\n4. When dealing with duplicates:")
print(" Standard set intersection removes duplicates. If you need to keep them:")
list1_with_duplicates = [1, 2, 2, 3, 4, 4, 5]
list2_with_duplicates = [2, 2, 4, 5, 5, 6]
print(f" List 1 with duplicates: {list1_with_duplicates}")
print(f" List 2 with duplicates: {list2_with_duplicates}")
## Method that preserves duplicates
def find_common_with_duplicates(list1, list2):
result = []
list2_copy = list2.copy() ## Create a copy to modify
for item in list1:
if item in list2_copy:
result.append(item)
list2_copy.remove(item) ## Remove to avoid matching the same item again
return result
common_with_duplicates = find_common_with_duplicates(list1_with_duplicates, list2_with_duplicates)
print(f" Common elements (preserving duplicates): {common_with_duplicates}")
print("\nSummary:")
print("1. For most cases: Use set intersection -> list(set(list1) & set(list2))")
print("2. When order matters: Convert smaller list to set, use list comprehension on larger list")
print("3. When duplicates matter: Use custom functions that check and remove matched elements")
print("4. Always consider the specific requirements of your use case")
- Führen Sie das Skript aus:
python3 best_practices.py
Dies zeigt eine umfassende Anleitung zu Best Practices für das Finden gemeinsamer Elemente in verschiedenen Szenarien.
Erstellen eines Utility-Moduls
Schließlich erstellen wir ein wiederverwendbares Utility-Modul, das wir in zukünftigen Projekten importieren können:
- Erstellen Sie eine neue Datei namens
list_utils.py
mit folgendem Inhalt:
"""
List Utilities Module
A collection of functions for working with lists, including finding common elements.
"""
def find_common_elements(list1, list2, method='set', preserve_order=False, preserve_duplicates=False):
"""
Find common elements between two lists.
Parameters:
list1 (list): First list
list2 (list): Second list
method (str): Method to use ('set', 'loop', or 'comprehension')
preserve_order (bool): Whether to preserve the order of items from list1
preserve_duplicates (bool): Whether to preserve duplicate common elements
Returns:
list: List of common elements
"""
## Handle the case with duplicates
if preserve_duplicates:
result = []
list2_copy = list2.copy()
for item in list1:
if item in list2_copy:
result.append(item)
list2_copy.remove(item)
return result
## When order matters but duplicates don't
if preserve_order and not preserve_duplicates:
lookup_set = set(list2)
return [item for item in list1 if item in lookup_set]
## When neither order nor duplicates matter
if method == 'set':
return list(set(list1) & set(list2))
elif method == 'loop':
common = []
for item in list1:
if item in list2 and item not in common:
common.append(item)
return common
elif method == 'comprehension':
seen = set()
return [item for item in list1 if item in list2 and not (item in seen or seen.add(item))]
else:
raise ValueError("Method must be 'set', 'loop', or 'comprehension'")
def list_difference(list1, list2):
"""
Find elements in list1 that are not in list2.
Parameters:
list1 (list): First list
list2 (list): Second list
Returns:
list: Elements in list1 but not in list2
"""
return list(set(list1) - set(list2))
def list_union(list1, list2):
"""
Find all unique elements from both lists combined.
Parameters:
list1 (list): First list
list2 (list): Second list
Returns:
list: All unique elements from both lists
"""
return list(set(list1) | set(list2))
## Usage examples
if __name__ == "__main__":
## Sample lists
list1 = [1, 2, 3, 4, 5, 5]
list2 = [4, 5, 5, 6, 7]
print("Original lists:")
print(f"List 1: {list1}")
print(f"List 2: {list2}")
print("\nCommon elements (using different methods):")
print(f"Set method: {find_common_elements(list1, list2, method='set')}")
print(f"Loop method: {find_common_elements(list1, list2, method='loop')}")
print(f"Comprehension method: {find_common_elements(list1, list2, method='comprehension')}")
print("\nWith order and duplicates preserved:")
print(f"Preserving order: {find_common_elements(list1, list2, preserve_order=True)}")
print(f"Preserving duplicates: {find_common_elements(list1, list2, preserve_duplicates=True)}")
print("\nOther list operations:")
print(f"Elements in list1 but not in list2: {list_difference(list1, list2)}")
print(f"Elements in list2 but not in list1: {list_difference(list2, list1)}")
print(f"All unique elements from both lists: {list_union(list1, list2)}")
- Führen Sie das Skript aus, um das Utility-Modul in Aktion zu sehen:
python3 list_utils.py
- Testen wir nun unser Utility-Modul, indem wir es in ein neues Skript importieren. Erstellen Sie eine Datei namens
test_utils.py
:
## Import our utility functions
from list_utils import find_common_elements, list_difference, list_union
## Creating some test data
fruits1 = ["apple", "banana", "cherry", "date", "banana"]
fruits2 = ["banana", "cherry", "fig", "grape", "banana"]
print("Fruits List 1:", fruits1)
print("Fruits List 2:", fruits2)
## Find common elements with different options
common_default = find_common_elements(fruits1, fruits2)
common_order = find_common_elements(fruits1, fruits2, preserve_order=True)
common_duplicates = find_common_elements(fruits1, fruits2, preserve_duplicates=True)
print("\nCommon fruits (default):", common_default)
print("Common fruits (preserving order):", common_order)
print("Common fruits (preserving duplicates):", common_duplicates)
## Find differences between lists
only_in_fruits1 = list_difference(fruits1, fruits2)
only_in_fruits2 = list_difference(fruits2, fruits1)
print("\nFruits only in list 1:", only_in_fruits1)
print("Fruits only in list 2:", only_in_fruits2)
## Find union of lists
all_unique_fruits = list_union(fruits1, fruits2)
print("\nAll unique fruits from both lists:", all_unique_fruits)
- Führen Sie das Testskript aus:
python3 test_utils.py
Sie sollten eine Ausgabe sehen, die unsere Utility-Funktionen mit verschiedenen Optionen demonstriert.
Durch das Abschließen dieses Schritts haben Sie nicht nur die Auswirkungen der Leistung verschiedener Methoden kennengelernt, sondern auch ein wiederverwendbares Utility-Modul erstellt, das Sie in zukünftige Python-Projekte integrieren können.