Conversion Methods
Basic Conversion Principles
Angle conversion involves transforming measurements between different units while maintaining mathematical accuracy. Understanding the fundamental conversion formulas is crucial for precise calculations.
From Unit |
To Unit |
Conversion Formula |
Degrees → Radians |
Radians |
angle * (π / 180) |
Radians → Degrees |
Degrees |
angle * (180 / π) |
Degrees → Gradians |
Gradians |
angle * (10/9) |
Gradians → Degrees |
Degrees |
angle * (9/10) |
Conversion Workflow
graph TD
A[Input Angle] --> B{Conversion Type}
B --> |Degrees to Radians| C[Multiply by π/180]
B --> |Radians to Degrees| D[Multiply by 180/π]
B --> |Degrees to Gradians| E[Multiply by 10/9]
Python Conversion Implementation
Simple Conversion Function
import math
def convert_angle(angle, from_unit, to_unit):
"""
Convert angles between different units
Supported units: 'deg', 'rad', 'grad'
"""
conversion_map = {
('deg', 'rad'): lambda x: math.radians(x),
('rad', 'deg'): lambda x: math.degrees(x),
('deg', 'grad'): lambda x: x * 10/9,
('grad', 'deg'): lambda x: x * 9/10
}
key = (from_unit, to_unit)
if key in conversion_map:
return conversion_map[key](angle)
else:
raise ValueError("Unsupported conversion")
## Example usage
print(convert_angle(45, 'deg', 'rad')) ## Converts 45 degrees to radians
Advanced Considerations
At LabEx, we emphasize the importance of:
- Precision in conversion
- Handling edge cases
- Using standard mathematical libraries
Error Handling and Validation
Robust angle conversion requires:
- Input validation
- Handling boundary conditions
- Supporting multiple unit types