Practical Implementation
Real-World Scenario: Data Processing Pipeline
class DataProcessor:
def __init__(self, data):
self.data = data
self.pipeline = []
def add_step(self, func):
self.pipeline.append(func)
return self
def execute(self):
result = self.data
for step in self.pipeline:
result = step(result)
return result
## Example usage
def clean_data(data):
return [item.strip() for item in data]
def filter_valid(data):
return [item for item in data if item]
def transform_uppercase(data):
return [item.upper() for item in data]
## LabEx Processing Workflow
processor = DataProcessor([" apple ", " ", "banana ", "cherry"])
final_result = (processor
.add_step(clean_data)
.add_step(filter_valid)
.add_step(transform_uppercase)
.execute())
print(final_result) ## ['APPLE', 'BANANA', 'CHERRY']
Sequencing Patterns
Pattern |
Description |
Use Case |
Chain of Responsibility |
Sequential processing |
Complex transformations |
Decorator Pattern |
Dynamically add behaviors |
Flexible processing |
Strategy Pattern |
Interchangeable algorithms |
Configurable workflows |
Advanced Sequencing Techniques
def create_dynamic_sequence(functions):
def execute_sequence(initial_data):
result = initial_data
for func in functions:
result = func(result)
return result
return execute_sequence
## Dynamic function selection
def get_processing_sequence(config):
available_functions = {
'clean': clean_data,
'filter': filter_valid,
'transform': transform_uppercase
}
selected_functions = [
available_functions[name]
for name in config
if name in available_functions
]
return create_dynamic_sequence(selected_functions)
Workflow Visualization
graph TD
A[Input Data] --> B{Select Functions}
B --> C[Create Sequence]
C --> D[Execute Sequence]
D --> E[Generate Output]
E --> F[Post-Process]
Error Handling and Logging
import logging
def robust_sequence_executor(functions, data):
logging.basicConfig(level=logging.INFO)
result = data
for func in functions:
try:
result = func(result)
logging.info(f"Successfully executed {func.__name__}")
except Exception as e:
logging.error(f"Error in {func.__name__}: {e}")
break
return result
- Use generators for memory efficiency
- Implement caching mechanisms
- Minimize redundant computations
- Profile and optimize critical paths
Best Practices
- Keep functions small and focused
- Use type hints
- Implement comprehensive error handling
- Design for flexibility and reusability