Advanced Implementation
Extended List Manipulation Techniques
graph TD
A[Advanced Extend Methods] --> B[Conditional Extension]
A --> C[Performance Optimization]
A --> D[Custom Extend Strategies]
1. Conditional List Extension
Dynamic Filtering Strategy
def advanced_extend_filter(base_list, new_items, condition=None):
"""
Extend list with conditional filtering
"""
if condition:
filtered_items = [item for item in new_items if condition(item)]
else:
filtered_items = new_items
base_list.extend(filtered_items)
return base_list
## Example Usage
numbers = [1, 2, 3]
extended_numbers = advanced_extend_filter(
numbers,
[-1, 4, 5, -2],
condition=lambda x: x > 0
)
print(extended_numbers) ## Output: [1, 2, 3, 4, 5]
Comparison of Extension Methods
Method |
Time Complexity |
Memory Efficiency |
extend() |
O(k) |
High |
List Comprehension |
O(k) |
Moderate |
Concatenation (+) |
O(n+k) |
Low |
3. Custom Extension Generators
def lazy_extend_generator(base_list, *iterables):
"""
Lazy extension with generator support
"""
for iterable in iterables:
yield from (item for item in iterable)
def process_lazy_extension():
base = [1, 2, 3]
additional_data = [[4, 5], (6, 7), {8, 9}]
## Efficient memory usage
extended_list = list(base + list(lazy_extend_generator(base, *additional_data)))
print(extended_list)
process_lazy_extension()
4. Advanced Type-Safe Extension
from typing import List, TypeVar, Generic
T = TypeVar('T')
class SafeList(Generic[T]):
def __init__(self, initial_list: List[T] = None):
self.data = initial_list or []
def safe_extend(self, items: List[T]) -> None:
"""
Type-safe list extension
"""
self.data.extend(items)
def get_list(self) -> List[T]:
return self.data
## LabEx Recommended Implementation
def demonstrate_safe_list():
int_list = SafeList[int]()
int_list.safe_extend([1, 2, 3])
int_list.safe_extend([4, 5, 6])
print(int_list.get_list())
demonstrate_safe_list()
5. Memory-Efficient Extension Strategies
Handling Large Datasets
import sys
def memory_efficient_extend(base_list, large_iterable):
"""
Extend list with minimal memory overhead
"""
## Use generator for memory efficiency
base_list.extend(item for item in large_iterable
if sys.getsizeof(item) < 1000)
return base_list
## Example with large dataset
large_data = range(10000)
result = memory_efficient_extend([], large_data)
Best Practices
- Use type hints for type safety
- Implement conditional extensions
- Prefer generators for large datasets
- Consider memory complexity
- Minimize unnecessary list copies
- Use generators for large iterables
- Implement type-specific extensions
By mastering these advanced implementation techniques, LabEx learners can develop more sophisticated and efficient Python list manipulation strategies.