Practical Examples
Data Processing Scenario
## Dynamic data processing
def process_student_scores(scores):
total_score = 0
for score in scores:
total_score += score
average_score = total_score / len(scores)
return average_score
scores = [85, 92, 78, 95, 88]
result = process_student_scores(scores)
print(f"Average Score: {result}")
Configuration Management
## Dynamic configuration handling
class AppConfig:
def __init__(self):
self.debug_mode = False
self.max_connections = 100
def update_config(self, **kwargs):
for key, value in kwargs.items():
setattr(self, key, value)
config = AppConfig()
config.update_config(debug_mode=True, max_connections=200)
State Machine Implementation
stateDiagram-v2
[*] --> Idle
Idle --> Processing
Processing --> Completed
Completed --> [*]
## Variable reassignment in state management
class WorkflowManager:
def __init__(self):
self.current_state = "Idle"
def transition(self, new_state):
self.current_state = new_state
workflow = WorkflowManager()
workflow.transition("Processing")
workflow.transition("Completed")
## Performance metric tracking
class PerformanceTracker:
def __init__(self):
self.metrics = {
'cpu_usage': 0,
'memory_usage': 0,
'network_latency': 0
}
def update_metrics(self, **new_metrics):
for key, value in new_metrics.items():
self.metrics[key] = value
tracker = PerformanceTracker()
tracker.update_metrics(
cpu_usage=45.5,
memory_usage=60.2
)
Scenario |
Reassignment Strategy |
Example |
Data Cleaning |
Type Conversion |
value = float(value) |
Normalization |
Mathematical Transformation |
score = (score - min_score) / (max_score - min_score) |
Filtering |
Conditional Reassignment |
filtered_data = [x for x in data if x > threshold] |
Machine Learning Feature Engineering
## Feature scaling and normalization
def normalize_features(features):
min_val = min(features)
max_val = max(features)
normalized_features = [
(x - min_val) / (max_val - min_val)
for x in features
]
return normalized_features
raw_features = [10, 20, 30, 40, 50]
processed_features = normalize_features(raw_features)
Error Handling and Fallback
## Robust variable reassignment
def safe_division(a, b, default=0):
try:
result = a / b
except ZeroDivisionError:
result = default
return result
calculation = safe_division(10, 0) ## Returns default value
These practical examples demonstrate how variable reassignment techniques can be applied in real-world scenarios, showcasing the flexibility of Python programming with LabEx's approach to coding.