Advanced Function Manipulation
Dynamic Function Creation
def create_multiplier(factor):
def multiplier(x):
return x * factor
return multiplier
triple = create_multiplier(3)
print(triple(4)) ## Outputs: 12
Function Introspection
def analyze_function(func):
print(f"Function Name: {func.__name__}")
print(f"Function Arguments: {func.__code__.co_varnames}")
print(f"Number of Arguments: {func.__code__.co_argcount}")
def example_function(a, b, c):
return a + b + c
analyze_function(example_function)
Context-Aware Transformations
import contextlib
def context_transformer(func):
@contextlib.contextmanager
def wrapper(*args, **kwargs):
print("Entering function context")
result = func(*args, **kwargs)
yield result
print("Exiting function context")
return wrapper
@context_transformer
def database_operation():
print("Performing database transaction")
Level |
Complexity |
Technique |
Use Case |
Basic |
Low |
Decorators |
Logging, Timing |
Intermediate |
Medium |
Partial Functions |
Argument Preset |
Advanced |
High |
Metaprogramming |
Dynamic Function Generation |
def curry(func):
def curried(*args):
if len(args) >= func.__code__.co_argcount:
return func(*args)
return lambda x: curried(*args, x)
return curried
@curry
def add_three_numbers(a, b, c):
return a + b + c
add_five = add_three_numbers(2)(3)
result = add_five(4) ## Outputs: 9
graph TD
A[Original Function] --> B{Advanced Transformation}
B -->|Metaprogramming| C[Dynamically Generated Function]
B -->|Context Transformation| D[Context-Aware Function]
B -->|Currying| E[Partially Applied Function]
class LazyFunction:
def __init__(self, func):
self.func = func
self._result = None
def __call__(self, *args, **kwargs):
if self._result is None:
self._result = self.func(*args, **kwargs)
return self._result
@LazyFunction
def expensive_computation():
print("Computing...")
return sum(range(1000000))
LabEx Advanced Manipulation Principles
At LabEx, we emphasize:
- Understanding transformation complexity
- Balancing flexibility and performance
- Maintaining code readability
def robust_transformer(func):
def wrapper(*args, **kwargs):
try:
return func(*args, **kwargs)
except TypeError:
print("Type mismatch in transformed function")
except ValueError:
print("Invalid value in transformed function")
return wrapper
Best Practices for Advanced Manipulation
- Use transformations sparingly
- Document complex transformations
- Understand performance implications
- Maintain type consistency
- Implement comprehensive error handling